在基于样例的图像修复算法中,由于优先权公式的计算容易受图像局部噪声和细小纹理的干扰,导致修复顺序错乱;而在搜索最优匹配块时,因忽略了图像块内部的结构影响,可能导致误匹配。针对以上问题提出了一种基于图像的结构-纹理分解及局部...在基于样例的图像修复算法中,由于优先权公式的计算容易受图像局部噪声和细小纹理的干扰,导致修复顺序错乱;而在搜索最优匹配块时,因忽略了图像块内部的结构影响,可能导致误匹配。针对以上问题提出了一种基于图像的结构-纹理分解及局部总变分最小化的图像修复模型。首先,根据对数总变分最小化模型,将待修复图像进行结构-纹理分解,得到图像的结构分量,并利用图像的结构分量来计算待修复点优先权,使优先权的计算排除局部纹理干扰而更具鲁棒性;其次,将优先权的计算改进为数据项和置信项的加权和,避免了乘积效应,确保数据项一直发挥作用,减少因修复顺序不合理造成的错误匹配;最后,根据图像的局部总变分最小化原则,将图像块的最优匹配转换为0-1优化问题,确保图像修复后的局部结构一致性。与3组参考文献的5组对比实验结果表明,峰值信噪比(PSNR)提高了1.12~3.56 d B,结构相似性指数提高了0.02~0.04。所提模型更好地遵循了修复优先性原则,具有更强的保持图像局部结构一致性的能力,改善了修复图像的视觉效果,适用于复杂结构的大面积毁损的图像的修复。展开更多
空间变化PSF(Space-variant Point Spread Function,SVPSF)图像,即物空间各点的退化随位置的改变而改变的图像,由于其复原技术涉及到多个甚至海量PSF的提取、存储和运算,相对于空间不变PSF(Space-Invariant Point Spread Function,SIPSF...空间变化PSF(Space-variant Point Spread Function,SVPSF)图像,即物空间各点的退化随位置的改变而改变的图像,由于其复原技术涉及到多个甚至海量PSF的提取、存储和运算,相对于空间不变PSF(Space-Invariant Point Spread Function,SIPSF)图像复原要困难得多。目前处理此类图像的主要方法包括空间坐标转换法,等晕区分块复原法,以减少数据存储量,降低计算量,提高收敛速度为目标的直接复原法等。本文回顾了这一课题的研究历史,对目前的研究工作进行了分析和总结,介绍了本实验室提出的结合GRM(Gradient Ringing Metric)评价算法的总变分最小化图像分块复原法,并提出了未来工作关注重点的展望。展开更多
CT(computed tomography)系统实际应用当中,经常会出现扫描数据不满足数据完备性条件的情况.针对不完全角度重建问题的研究,是目前迭代型算法研究中的一个热点.一系列基于带有约束的总变分最小化的重建算法近年来在不完全角度重建中取...CT(computed tomography)系统实际应用当中,经常会出现扫描数据不满足数据完备性条件的情况.针对不完全角度重建问题的研究,是目前迭代型算法研究中的一个热点.一系列基于带有约束的总变分最小化的重建算法近年来在不完全角度重建中取得了较好的效果,这其中基于交替方向法(alternating direction method,ADM)的重建算法表现出更好的性能.然而,ADM方法在求解过程中对矩阵求逆的处理效率不高,导致极大的计算开销.本文针对该问题,使用非精确ADM方法,利用线性近似的方式替换掉计算开销较大的项,使得矩阵求逆问题可以通过快速傅里叶变换加速实现.实验结果表明,本文提出的非精确交替方向总变分最小化重建算法与精确ADM重建算法相比,没有明显的精度损失,计算时间缩减30%左右.展开更多
基金Supported by the Research and Development Projects of Science and Technology of Hebei Province(06242188D-2)the Natural Science Foundation of Hebei Province(F2007000221)
文摘在基于样例的图像修复算法中,由于优先权公式的计算容易受图像局部噪声和细小纹理的干扰,导致修复顺序错乱;而在搜索最优匹配块时,因忽略了图像块内部的结构影响,可能导致误匹配。针对以上问题提出了一种基于图像的结构-纹理分解及局部总变分最小化的图像修复模型。首先,根据对数总变分最小化模型,将待修复图像进行结构-纹理分解,得到图像的结构分量,并利用图像的结构分量来计算待修复点优先权,使优先权的计算排除局部纹理干扰而更具鲁棒性;其次,将优先权的计算改进为数据项和置信项的加权和,避免了乘积效应,确保数据项一直发挥作用,减少因修复顺序不合理造成的错误匹配;最后,根据图像的局部总变分最小化原则,将图像块的最优匹配转换为0-1优化问题,确保图像修复后的局部结构一致性。与3组参考文献的5组对比实验结果表明,峰值信噪比(PSNR)提高了1.12~3.56 d B,结构相似性指数提高了0.02~0.04。所提模型更好地遵循了修复优先性原则,具有更强的保持图像局部结构一致性的能力,改善了修复图像的视觉效果,适用于复杂结构的大面积毁损的图像的修复。
文摘由于受数据采集时间、照射剂量、成像系统扫描的几何位置等因素的约束,计算机断层成像(CT)技术目前只能在有限角度范围或在较少的投影角度得到数据,这些都属于不完全角度重建问题。图像重建问题中的总变分(Total-Variation, TV)最小化模型使用基于交替方向法(alternating direction method, ADM)的稀疏优化算法能够在不完全角度的图像重建中获得较优的重建结果。然而,在极稀疏的角度数量下,各向同性TV最小化算法的重建精度不是很理想,存在进一步改善空间。本文针对该问题,通过基于稀疏优化的交替方向方法推导基于各向异性TV最小化的CT图像重建算法。实验结果表明,在稀疏角度重建中,本文提出的基于各向异性TV最小化重建算法与各向同性TV最小化重建算法相比,在稀疏性保持良好的基础上,重建精度上存在优势,综合性能方面表现更优异。
文摘空间变化PSF(Space-variant Point Spread Function,SVPSF)图像,即物空间各点的退化随位置的改变而改变的图像,由于其复原技术涉及到多个甚至海量PSF的提取、存储和运算,相对于空间不变PSF(Space-Invariant Point Spread Function,SIPSF)图像复原要困难得多。目前处理此类图像的主要方法包括空间坐标转换法,等晕区分块复原法,以减少数据存储量,降低计算量,提高收敛速度为目标的直接复原法等。本文回顾了这一课题的研究历史,对目前的研究工作进行了分析和总结,介绍了本实验室提出的结合GRM(Gradient Ringing Metric)评价算法的总变分最小化图像分块复原法,并提出了未来工作关注重点的展望。
文摘CT(computed tomography)系统实际应用当中,经常会出现扫描数据不满足数据完备性条件的情况.针对不完全角度重建问题的研究,是目前迭代型算法研究中的一个热点.一系列基于带有约束的总变分最小化的重建算法近年来在不完全角度重建中取得了较好的效果,这其中基于交替方向法(alternating direction method,ADM)的重建算法表现出更好的性能.然而,ADM方法在求解过程中对矩阵求逆的处理效率不高,导致极大的计算开销.本文针对该问题,使用非精确ADM方法,利用线性近似的方式替换掉计算开销较大的项,使得矩阵求逆问题可以通过快速傅里叶变换加速实现.实验结果表明,本文提出的非精确交替方向总变分最小化重建算法与精确ADM重建算法相比,没有明显的精度损失,计算时间缩减30%左右.