期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
MIMO干扰信道中基于非线性预编码的收发机设计 被引量:2
1
作者 王炜 徐凌泽 +1 位作者 周语宁 潘鹏 《计算机工程》 CAS CSCD 北大核心 2018年第10期136-140,共5页
针对多输入多输出(MIMO)干扰信道中存在的收发机间和数据流间的共信道干扰,提出一种基于非线性Tomlinson-Harashima预编码的收发机联合设计方法。以最小化系统总均方误差为目标函数,通过交替迭代寻找局部最优解,从而得到接收矩阵、发射... 针对多输入多输出(MIMO)干扰信道中存在的收发机间和数据流间的共信道干扰,提出一种基于非线性Tomlinson-Harashima预编码的收发机联合设计方法。以最小化系统总均方误差为目标函数,通过交替迭代寻找局部最优解,从而得到接收矩阵、发射预编码矩阵和反馈矩阵。仿真结果表明,该方法能够有效抑制MIMO干扰信道中的共信道干扰,尤其是在发射机发送满数据流时,具有比线性收发机联合设计方法更优的差错性能。 展开更多
关键词 多输入多输出干扰信道 非线性预编码 收发机联合设计 迭代优化 总均方误差 满数据流
下载PDF
New Class of Almost Unbiased Modified Ratio Cum Product Estimators with Knownparameters of Auxiliary Variables
2
作者 Jambulingam Subramani Master Ajith S 《Journal of Mathematics and System Science》 2017年第9期248-260,共13页
This manuscript deals with new class of almost unbiased ratio cum product estimators for the estimation of population mean of the study variable by using the known values auxiliary variable. The bias and mean squared ... This manuscript deals with new class of almost unbiased ratio cum product estimators for the estimation of population mean of the study variable by using the known values auxiliary variable. The bias and mean squared error of proposed estimators are obtained. An empirical study is carried out to assess the efficiency of proposed estimators over the existing estimators with the help of some known natural populations and it shows that the proposed estimators are almost unbiased and it perform better than the existing estimators. 展开更多
关键词 Auxiliary variable BIAS Mean squared error Natural populations Ratio and Productestimators Simple random sampling.
下载PDF
General Classes of Variance Estimators in Simple Random Sampling Using Multi-auxiliary Variables
3
作者 Zahoor Ahmad Shoaib Ali Muhammad Hanif 《Journal of Mathematics and System Science》 2013年第5期262-269,共8页
Srivastava and Jhajj [ 1 6] proposed a class of estimators for estimating population variance using multi auxiliary variables in simple random sampling and they utilized the means and variances of auxiliary variables.... Srivastava and Jhajj [ 1 6] proposed a class of estimators for estimating population variance using multi auxiliary variables in simple random sampling and they utilized the means and variances of auxiliary variables. In this paper, we adapted this class and motivated by Searle [13], and we suggested more generalized class of estimators for estimating the population variance in simple random sampling. The expressions for the mean square error of proposed class have been derived in general form. Besides obtaining the minimized MSE of the proposed and adapted class, it is shown that the adapted classis the special case of the proposed class. Moreover, these theoretical findings are supported by an empirical study of original data. 展开更多
关键词 Variances estimation multi-auxiliary variables simple random sampling mean square errors.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部