期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于Hankel-DMD的城市交通事故风险时空预测 被引量:1
1
作者 金杰灵 史晨军 邓院昌 《中国安全生产科学技术》 CAS CSCD 北大核心 2022年第8期18-23,共6页
为解决城市交通事故风险时空分布预测任务中时空关联性捕捉困难的问题,提出基于动态模态分解(DMD)的城市交通事故分析时空预测模型,模型利用总最小二乘法去除交通事故数据中的噪声,应用结合Hankel矩阵的动态模态分解模型(Hankel-DMD)捕... 为解决城市交通事故风险时空分布预测任务中时空关联性捕捉困难的问题,提出基于动态模态分解(DMD)的城市交通事故分析时空预测模型,模型利用总最小二乘法去除交通事故数据中的噪声,应用结合Hankel矩阵的动态模态分解模型(Hankel-DMD)捕捉交通事故风险的时空关联性,对交通事故风险的时空分布进行预测。研究结果表明:DMD框架能够为高维预测任务提供低秩解决方案,从高维数据中捕捉时空关联性;Hankel-DMD模型在预测评价指标平均绝对误差和均方根误差方面的表现明显优于统计学及机器学习等方法;Hankel-DMD模型产生的动态模态和特征值,对事故风险系统的时空动态特征具有一定的可解释性,同时验证Hankel-DMD模型的适用性。 展开更多
关键词 交通事故风险 时空预测 动态模态分解 总最小二乘法 HANKEL矩阵
下载PDF
Robust structured total least squares algorithm for passive location 被引量:2
2
作者 Hao Wu Shuxin Chen +2 位作者 Yihang Zhang Hengyang Zhang Juan Ni 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2015年第5期946-953,共8页
A new approach called the robust structured total least squares(RSTLS) algorithm is described for solving location inaccuracy caused by outliers in the single-observer passive location. It is built within the weighted... A new approach called the robust structured total least squares(RSTLS) algorithm is described for solving location inaccuracy caused by outliers in the single-observer passive location. It is built within the weighted structured total least squares(WSTLS)framework and improved based on the robust estimation theory.Moreover, the improved Danish weight function is proposed according to the robust extremal function of the WSTLS, so that the new algorithm can detect outliers based on residuals and reduce the weights of outliers automatically. Finally, the inverse iteration method is discussed to deal with the RSTLS problem. Simulations show that when outliers appear, the result of the proposed algorithm is still accurate and robust, whereas that of the conventional algorithms is distorted seriously. 展开更多
关键词 passive location structured total least squares robustestimation equivalent weight function.
原文传递
Nonlinear multifunctional sensor signal reconstruction based on least squares support vector machines and total least squares algorithm 被引量:2
3
作者 Xin LIU Guo WEI +1 位作者 Jin-wei SUN Dan LIU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第4期497-503,共7页
Least squares support vector machines (LS-SVMs) are modified support vector machines (SVMs) that involve equality constraints and work with a least squares cost function, which simplifies the optimization procedure. I... Least squares support vector machines (LS-SVMs) are modified support vector machines (SVMs) that involve equality constraints and work with a least squares cost function, which simplifies the optimization procedure. In this paper, a novel training algorithm based on total least squares (TLS) for an LS-SVM is presented and applied to multifunctional sensor signal reconstruction. For three different nonlinearities of a multifunctional sensor model, the reconstruction accuracies of input signals are 0.001 36%, 0.031 84% and 0.504 80%, respectively. The experimental results demonstrate the higher reliability and accuracy of the proposed method for multifunctional sensor signal reconstruction than the original LS-SVM training algorithm, and verify the feasibility and stability of the proposed method. 展开更多
关键词 Least squares support vector machine Total least squares Multifunctional sensor Signal reconstruction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部