An optimal design of wastewater reuse for a University is concerned in this paper. The raw water and the capacity of wastewater reuse were determined according to the wastewater characteristic of a university; the tre...An optimal design of wastewater reuse for a University is concerned in this paper. The raw water and the capacity of wastewater reuse were determined according to the wastewater characteristic of a university; the treatment process was chosen by building a cost-benefit model; and the modeling test was performed about the operation effect of the proposed project and the recommended water quality of reclaimed water. It is estimated that 3.4×10^5 m^3/a tap water and 6.1×10^5 Yuan/a will be saved if the project was put into operation and the proposed project will reduce the total quantity of pollutant efficiently and bring lots of social and economic benefits.展开更多
The kinetic fractionation of open-water evaporation against the stable water isotope H_2 ^(18)O is an important mechanism underlying many hydrologic studies that use ^(18)O as an isotopic tracer. A recent in-situ meas...The kinetic fractionation of open-water evaporation against the stable water isotope H_2 ^(18)O is an important mechanism underlying many hydrologic studies that use ^(18)O as an isotopic tracer. A recent in-situ measurement of the isotopic water vapor flux over a lake indicates that the kinetic effect is much weaker(kinetic factor 6.2‰) than assumed previously(kinetic factor14.2‰) by lake isotopic budget studies. This study investigates the implications of the weak kinetic effect for studies of deuterium excess-humidity relationships, regional moisture recycling, and global evapotranspiration partitioning. The results indicate that the low kinetic factor is consistent with the deuterium excess-humidity relationships observed over open oceans.The moisture recycling rate in the Great Lakes region derived from the isotopic tracer method with the low kinetic factor is a much better agreement with those from atmospheric modeling studies than if the default kinetic factor of 14.2‰ is used. The ratio of transpiration to evapotranspiration at global scale decreases from 84±9%(with the default kinetic factor) to 76±19%(with the low kinetic factor), the latter of which is in slightly better agreement with other non-isotopic partitioning results.展开更多
文摘An optimal design of wastewater reuse for a University is concerned in this paper. The raw water and the capacity of wastewater reuse were determined according to the wastewater characteristic of a university; the treatment process was chosen by building a cost-benefit model; and the modeling test was performed about the operation effect of the proposed project and the recommended water quality of reclaimed water. It is estimated that 3.4×10^5 m^3/a tap water and 6.1×10^5 Yuan/a will be saved if the project was put into operation and the proposed project will reduce the total quantity of pollutant efficiently and bring lots of social and economic benefits.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41475141, 41830860, 41575147 & 41505005)the National Key Research and Development Program of China (Grant No. 2016YFC0500102)+5 种基金the U. S. National Science Foundation (Grant No. 1520684)the Science and Technology Department of Ningxia (Grant No. 2015KJHM34)the China Special Fund for Meteorological Research in the Public Interest (Major projects, Grant No. GYHY201506001-6)the NUIST Scientific Foundation (Grant No. KLME1415)the Priority Academic Program Development of Jiangsu Higher Education Institutions (Grant No. PAPD)the Ministry of Education of the People’s Republic of China (Grant No. PCSIRT)
文摘The kinetic fractionation of open-water evaporation against the stable water isotope H_2 ^(18)O is an important mechanism underlying many hydrologic studies that use ^(18)O as an isotopic tracer. A recent in-situ measurement of the isotopic water vapor flux over a lake indicates that the kinetic effect is much weaker(kinetic factor 6.2‰) than assumed previously(kinetic factor14.2‰) by lake isotopic budget studies. This study investigates the implications of the weak kinetic effect for studies of deuterium excess-humidity relationships, regional moisture recycling, and global evapotranspiration partitioning. The results indicate that the low kinetic factor is consistent with the deuterium excess-humidity relationships observed over open oceans.The moisture recycling rate in the Great Lakes region derived from the isotopic tracer method with the low kinetic factor is a much better agreement with those from atmospheric modeling studies than if the default kinetic factor of 14.2‰ is used. The ratio of transpiration to evapotranspiration at global scale decreases from 84±9%(with the default kinetic factor) to 76±19%(with the low kinetic factor), the latter of which is in slightly better agreement with other non-isotopic partitioning results.