-
题名基于多视角融合稀疏表示的恐怖视频识别
被引量:7
- 1
-
-
作者
丁昕苗
李兵
胡卫明
郭文
王振翀
-
机构
山东工商学院
中国科学院自动化研究所、模式识别国家重点实验室
中国矿业大学
-
出处
《电子学报》
EI
CAS
CSCD
北大核心
2014年第2期301-305,共5页
-
基金
国家自然科学基金(No.60935002,No.61100142,No.61174007,No.61303086)
国家863高技术研究发展计划(No.2012AA012503,No.2012AA012504)
+1 种基金
山东省自然科学基金(No.ZR2012FL09,No.ZR2011FQ039,No.ZR2011FL009)
山东省教育厅高校科研计划(No.J11LG12)
-
文摘
现有的基于多示例学习的恐怖视频识别算法都是假设示例间是相互独立的,而忽略了恐怖视频中存在的上下文信息和示例包的统计特性.因此,本文提出了一种多视角融合稀疏表示模型.该模型分别从集合视角、上下文视角以及统计特性视角三个不同的视角来看待一个视频片段,并利用联合稀疏表示框架将三个不同视角融合到一个分类框架中,用来进行恐怖视频的识别.在恐怖视频库上的实验结果验证了算法在恐怖视频识别中比现有的其它算法有更好的性能和稳定性.
-
关键词
恐怖视频
稀疏表示
多视角
核函数
-
Keywords
horror video
sparse coding
multi-view
kernel
-
分类号
TP37
[自动化与计算机技术—计算机系统结构]
-