期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
二阶积分边值问题的恒号解 被引量:1
1
作者 董士杰 《军械工程学院学报》 2015年第1期66-69,共4页
研究积分边界条件下,证明二阶微分方程边值问题恒号解的存在性,应用单侧全局分歧定理,得到该边值问题至少存在一个正解和一个负解.
关键词 积分边值问题 恒号解 特征值 分歧方法
下载PDF
On New Invariant Solutions of Generalized Fokker-Planck Equation 被引量:1
2
作者 YAORuo-Xia LIZhi-Bin 《Communications in Theoretical Physics》 SCIE CAS CSCD 2004年第5期665-668,共4页
The generalized one-dimensional Fokker-Planck equation is analyzed via potential symmetry method and the invariant solutions under potential symmetries are obtained. Among those solutions, some are new and first repor... The generalized one-dimensional Fokker-Planck equation is analyzed via potential symmetry method and the invariant solutions under potential symmetries are obtained. Among those solutions, some are new and first reported. 展开更多
关键词 Fokker-Planck equation potential symmetry invariant solutions symbolic computation
下载PDF
Conservation Laws and Analytic Soliton Solutions for Coupled Integrable Dispersionless Equations with Symbolic Computation
3
作者 王盼 田播 +2 位作者 刘文军 屈启兴 江彦 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第10期687-696,共10页
Under investigation in this paper are two coupled integrable dispersionless (CID) equations modelingthe dynamics of the current-fed string within an external magnetic field.Through a set of the dependent variabletrans... Under investigation in this paper are two coupled integrable dispersionless (CID) equations modelingthe dynamics of the current-fed string within an external magnetic field.Through a set of the dependent variabletransformations, the bilinear forms for the CID equations are derived.Based on the Hirota method and symboliccomputation, the analytic N-soliton solutions are presented.Infinitely many conservation laws for the CID equationsare given through the known spectral problem.Propagation characteristics and interaction behaviors of the solitons areanalyzed graphically. 展开更多
关键词 coupled integrable dispersionless equations conservation laws soliton solutions hirota method symbolic computation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部