The generalized one-dimensional Fokker-Planck equation is analyzed via potential symmetry method and the invariant solutions under potential symmetries are obtained. Among those solutions, some are new and first repor...The generalized one-dimensional Fokker-Planck equation is analyzed via potential symmetry method and the invariant solutions under potential symmetries are obtained. Among those solutions, some are new and first reported.展开更多
Under investigation in this paper are two coupled integrable dispersionless (CID) equations modelingthe dynamics of the current-fed string within an external magnetic field.Through a set of the dependent variabletrans...Under investigation in this paper are two coupled integrable dispersionless (CID) equations modelingthe dynamics of the current-fed string within an external magnetic field.Through a set of the dependent variabletransformations, the bilinear forms for the CID equations are derived.Based on the Hirota method and symboliccomputation, the analytic N-soliton solutions are presented.Infinitely many conservation laws for the CID equationsare given through the known spectral problem.Propagation characteristics and interaction behaviors of the solitons areanalyzed graphically.展开更多
文摘The generalized one-dimensional Fokker-Planck equation is analyzed via potential symmetry method and the invariant solutions under potential symmetries are obtained. Among those solutions, some are new and first reported.
基金Supported by the National Natural Science Foundation of China under Grant No.60772023the Open Fund No.BUAA-SKLSDE-09KF-04+2 种基金Supported Project No.SKLSDE-2010ZX-07 of the State Key Laboratory of Software Development Environment,Beijing University of Aeronautics and Astronauticsthe National Basic Research Program of China (973 Program) under Grant No.2005CB321901 the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.200800130006,Chinese Ministry of Education
文摘Under investigation in this paper are two coupled integrable dispersionless (CID) equations modelingthe dynamics of the current-fed string within an external magnetic field.Through a set of the dependent variabletransformations, the bilinear forms for the CID equations are derived.Based on the Hirota method and symboliccomputation, the analytic N-soliton solutions are presented.Infinitely many conservation laws for the CID equationsare given through the known spectral problem.Propagation characteristics and interaction behaviors of the solitons areanalyzed graphically.