Magnetorheological(MR)materials are a class of smart material,whose the mechanical/rheological state can be controlled under a magnetic field.Magnetorheological materials are typically fluids,gels,or elastomers.In thi...Magnetorheological(MR)materials are a class of smart material,whose the mechanical/rheological state can be controlled under a magnetic field.Magnetorheological materials are typically fluids,gels,or elastomers.In this study,anisotropic and isotropic magneto-rheological elastomer(MRE)samples were fabricated using a silicone rubber matrix with carbonyl iron particles as filler particles.The magnetic field-dependent inductance properties of these samples were studied using inductors specially designed for the analysis.The effect of the filler particle content,fabrication conditions,and inductance properties were characterized using a self-built system in both constant and transient magnetic fields.These factors show a significant effect on the inductance properties of the MRE inductor under an applied magnetic field.The anisotropic MRE inductor was more sensitive than the inductor based on an isotropic MRE.Owing to the presence of a constant magnetic field,the inductance value of the MRE inductor decreased with an increase in the external magnetic field.An attempt in elucidation of the mechanism is reported here.This study may enable the MRE to be widely used in practical applications such as monitoring magnetic field or detecting the filler particle content inside MR materials.展开更多
The research deals with the physical mechanisms of molecular restructurings in horny layers caused by effect of constant magnetic field. The structure of dehydrated epidermis and changes in light dispersion in water s...The research deals with the physical mechanisms of molecular restructurings in horny layers caused by effect of constant magnetic field. The structure of dehydrated epidermis and changes in light dispersion in water solution of glucose as the main component of inter-desmosome bridges under influence of constant magnetic field have been experimentally studied. On the basis of the results obtained these bridges are assumed to play key role in disordering the horny layer under the action of constant magnetic field. This assumption agrees with the results of clinical research.展开更多
基金Project(cstc2019jcyj-msxm X0005)supported by General Program of Chongqing Natural Science Foundation,ChinaProject(51905062)supported by the National Natural Science Foundation of China。
文摘Magnetorheological(MR)materials are a class of smart material,whose the mechanical/rheological state can be controlled under a magnetic field.Magnetorheological materials are typically fluids,gels,or elastomers.In this study,anisotropic and isotropic magneto-rheological elastomer(MRE)samples were fabricated using a silicone rubber matrix with carbonyl iron particles as filler particles.The magnetic field-dependent inductance properties of these samples were studied using inductors specially designed for the analysis.The effect of the filler particle content,fabrication conditions,and inductance properties were characterized using a self-built system in both constant and transient magnetic fields.These factors show a significant effect on the inductance properties of the MRE inductor under an applied magnetic field.The anisotropic MRE inductor was more sensitive than the inductor based on an isotropic MRE.Owing to the presence of a constant magnetic field,the inductance value of the MRE inductor decreased with an increase in the external magnetic field.An attempt in elucidation of the mechanism is reported here.This study may enable the MRE to be widely used in practical applications such as monitoring magnetic field or detecting the filler particle content inside MR materials.
文摘The research deals with the physical mechanisms of molecular restructurings in horny layers caused by effect of constant magnetic field. The structure of dehydrated epidermis and changes in light dispersion in water solution of glucose as the main component of inter-desmosome bridges under influence of constant magnetic field have been experimentally studied. On the basis of the results obtained these bridges are assumed to play key role in disordering the horny layer under the action of constant magnetic field. This assumption agrees with the results of clinical research.