In this work, the laminar convective heat transfer performance and the pressure drop of water-based nanofluids containing Al2O3, TiO2 and SiO2 nanoparticles flowing through a straight circular tube were experimentally...In this work, the laminar convective heat transfer performance and the pressure drop of water-based nanofluids containing Al2O3, TiO2 and SiO2 nanoparticles flowing through a straight circular tube were experimentally investigated. The experimental results showed that addition of small amounts of nano-sized Al2O3 and TiO2 particles to de-ionized water increased heat transfer coefficients considerably, while the SiO2 nanofluids showed the opposite behavior attracting the authors' interests. An average of 16% and 8.2% increase in heat transfer coefficient were observed with the average of 28% and 15% penalty in pressure drop for Al2O3 and TiO2 nanofluids.展开更多
In the present investigation we have discussed the flow of a Jeffrey-six constant incompressible fluid between two infinite coaxial cylinders in the presence of heat transfer analysis. The governing equations of Jeffr...In the present investigation we have discussed the flow of a Jeffrey-six constant incompressible fluid between two infinite coaxial cylinders in the presence of heat transfer analysis. The governing equations of Jeffrey-six constant fluid along with energy equation have been derived in cylindrical coordinates. The highly nonlinear equations are simplified with the help of non-dimensional parameters and then solved analytically with the help of homotopy analysis method (HAM) for two fundamental flows namely Couette and Generalized Couette flow. The effects of emerging parameters are discussed through graphs. The convergence of the HAM solution has been discussed by plotting h-curves.展开更多
文摘In this work, the laminar convective heat transfer performance and the pressure drop of water-based nanofluids containing Al2O3, TiO2 and SiO2 nanoparticles flowing through a straight circular tube were experimentally investigated. The experimental results showed that addition of small amounts of nano-sized Al2O3 and TiO2 particles to de-ionized water increased heat transfer coefficients considerably, while the SiO2 nanofluids showed the opposite behavior attracting the authors' interests. An average of 16% and 8.2% increase in heat transfer coefficient were observed with the average of 28% and 15% penalty in pressure drop for Al2O3 and TiO2 nanofluids.
文摘In the present investigation we have discussed the flow of a Jeffrey-six constant incompressible fluid between two infinite coaxial cylinders in the presence of heat transfer analysis. The governing equations of Jeffrey-six constant fluid along with energy equation have been derived in cylindrical coordinates. The highly nonlinear equations are simplified with the help of non-dimensional parameters and then solved analytically with the help of homotopy analysis method (HAM) for two fundamental flows namely Couette and Generalized Couette flow. The effects of emerging parameters are discussed through graphs. The convergence of the HAM solution has been discussed by plotting h-curves.