The state space representation of the Bezout identity for generalized systems proposed by (Wang and Balas, 1989) is discussed again. A more concise way of description and proof is presented and the physical signific...The state space representation of the Bezout identity for generalized systems proposed by (Wang and Balas, 1989) is discussed again. A more concise way of description and proof is presented and the physical significance of the result in is also analyzed. Thus, our work is of independent interest.展开更多
The main purpose of this paper is to introduce the general Smarandache mul- tiplicative sequence based on the Smarandache multiplicative sequence, and calculate the value of some infinite series involving these sequen...The main purpose of this paper is to introduce the general Smarandache mul- tiplicative sequence based on the Smarandache multiplicative sequence, and calculate the value of some infinite series involving these sequences.展开更多
In 2D fast multipole method for scattering problems,square quadrature rule is used to discretize the Bessel integral identity for diagonal expansion of 2D Helmholtz kernel,and numerical integration error is introduced...In 2D fast multipole method for scattering problems,square quadrature rule is used to discretize the Bessel integral identity for diagonal expansion of 2D Helmholtz kernel,and numerical integration error is introduced. Taking advantage of the relationship between Euler-Maclaurin formula and trapezoidal quadrature rule,and the relationship between trapezoidal and square quadrature rule,sharp computable bound with analytical form on the error of numerical integration of Bessel integral identity by square quadrature rule is derived in this paper. Numerical experiments are presented at the end to demonstrate the accuracy of the sharp computable bound on the numerical integration error.展开更多
文摘The state space representation of the Bezout identity for generalized systems proposed by (Wang and Balas, 1989) is discussed again. A more concise way of description and proof is presented and the physical significance of the result in is also analyzed. Thus, our work is of independent interest.
文摘The main purpose of this paper is to introduce the general Smarandache mul- tiplicative sequence based on the Smarandache multiplicative sequence, and calculate the value of some infinite series involving these sequences.
基金the National Natural Science Foundation of China (No. 11074170)the Independent Research Program of State Key Laboratory of Machinery System and Vibration (SKLMSV) (No. MSV-MS-2008-05)the Visiting Scholar Program of SKLMSV (No. MSV-2009-06)
文摘In 2D fast multipole method for scattering problems,square quadrature rule is used to discretize the Bessel integral identity for diagonal expansion of 2D Helmholtz kernel,and numerical integration error is introduced. Taking advantage of the relationship between Euler-Maclaurin formula and trapezoidal quadrature rule,and the relationship between trapezoidal and square quadrature rule,sharp computable bound with analytical form on the error of numerical integration of Bessel integral identity by square quadrature rule is derived in this paper. Numerical experiments are presented at the end to demonstrate the accuracy of the sharp computable bound on the numerical integration error.