期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
恶意手机程序引发的法律责任浅析
1
作者 宋伟锋 张晓建 《实事求是》 2015年第6期76-78,共3页
伴随智能手机的普遍推广,恶意手机软件侵害用户权益的行为也日益泛滥。恶意手机软件一般是指在用户不完全知情和认可(它包括未经用户许可、强迫引导用户许可或隐瞒关键信息等)的情况下强行安装到用户手机中,或者一旦安装就无法正常卸载... 伴随智能手机的普遍推广,恶意手机软件侵害用户权益的行为也日益泛滥。恶意手机软件一般是指在用户不完全知情和认可(它包括未经用户许可、强迫引导用户许可或隐瞒关键信息等)的情况下强行安装到用户手机中,或者一旦安装就无法正常卸载和删除,但又具备一定正常功能的软件程序。恶意手机软件容易造成恶意吸费、非法收集用户信息等侵权。通过法律规制恶意手机软件侵害用户的法益行为势在必行。 展开更多
关键词 恶意手机软件 法律责任 法律规制
下载PDF
Smartphone Malware Detection Model Based on Artificial Immune System 被引量:1
2
作者 WU Bin LU Tianliang +2 位作者 ZHENG Kangfeng ZHANG Dongmei LIN Xing 《China Communications》 SCIE CSCD 2014年第A01期86-92,共7页
In order to solve the problem that me traditional signature-based detection technology cannot effectively detect unknown malware, we propose in this study a smartphone malware detection model (SP-MDM) based on artif... In order to solve the problem that me traditional signature-based detection technology cannot effectively detect unknown malware, we propose in this study a smartphone malware detection model (SP-MDM) based on artificial immune system, in which static malware analysis and dynamic malware analysis techniques are combined, and antigens are generated by encoding the characteristics extracted from the malware. Based on negative selection algorithm, the mature detectors are generated. By introducing clonal selection algorithm, the detectors with higher affinity are selected to undergo a proliferation and somatic hyper-mutation process, so that more excellent detector offspring can be generated. Experimental result shows that the detection model has a higher detection rate for unknown smartphone malware, and better detection performance can be achieved by increasing the clone generation. 展开更多
关键词 artificial immune system smartphonemalware DETECTION negative selection clonalselection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部