A simple formula is proposed to predict the vertical distribution of a suspended load concentration in a 2D steady turbulent flow. The proposed formula significantly improves the well-known Rouse formula where sedimen...A simple formula is proposed to predict the vertical distribution of a suspended load concentration in a 2D steady turbulent flow. The proposed formula significantly improves the well-known Rouse formula where sediment concentration has an infinitely large value at the channel bottom and a zero value at the water surface. Based on this formula and the logarithmic ve- locity profile, a theoretical elementary function for the transport rate of a suspended load is developed. This equation improves the Einstein equation in which the unit-width suspended sediment discharge must be solved by numerical integration and a contra- diction between the lower limit of the integral and that of velocity distribution exists.展开更多
This paper introduces a new method of measuring the three-dimensional drape shape of fabrics with structural light. First, we apply parallel annular structural light to form light and shade alternating contour stripes...This paper introduces a new method of measuring the three-dimensional drape shape of fabrics with structural light. First, we apply parallel annular structural light to form light and shade alternating contour stripes on the surface of fabrics. We then collect the images of contour stripes using Charge Coupled Device (CCD). Subsequently, we process the images to identify the contour stripes and edges of fabrics, and obtain the fabric contour lines of curved surfaces. Finally, we apply three-dimensional curved surface modeling method based on a network of polar coordinates, and reconstruct the three-dimensional drape shape of fabrics. Experiments show that our method is effective in testing and reconstructing three-dimensional drape shape of fabrics.展开更多
基金Project (Nos. 50079025 and 40231017) supported by the National Natural Science Foundation of China
文摘A simple formula is proposed to predict the vertical distribution of a suspended load concentration in a 2D steady turbulent flow. The proposed formula significantly improves the well-known Rouse formula where sediment concentration has an infinitely large value at the channel bottom and a zero value at the water surface. Based on this formula and the logarithmic ve- locity profile, a theoretical elementary function for the transport rate of a suspended load is developed. This equation improves the Einstein equation in which the unit-width suspended sediment discharge must be solved by numerical integration and a contra- diction between the lower limit of the integral and that of velocity distribution exists.
基金National Natural Science Foundation of China (50275139) Natural Science Foundation of Zhejiang (01388-G)
文摘This paper introduces a new method of measuring the three-dimensional drape shape of fabrics with structural light. First, we apply parallel annular structural light to form light and shade alternating contour stripes on the surface of fabrics. We then collect the images of contour stripes using Charge Coupled Device (CCD). Subsequently, we process the images to identify the contour stripes and edges of fabrics, and obtain the fabric contour lines of curved surfaces. Finally, we apply three-dimensional curved surface modeling method based on a network of polar coordinates, and reconstruct the three-dimensional drape shape of fabrics. Experiments show that our method is effective in testing and reconstructing three-dimensional drape shape of fabrics.