A simple formula is proposed to predict the vertical distribution of a suspended load concentration in a 2D steady turbulent flow. The proposed formula significantly improves the well-known Rouse formula where sedimen...A simple formula is proposed to predict the vertical distribution of a suspended load concentration in a 2D steady turbulent flow. The proposed formula significantly improves the well-known Rouse formula where sediment concentration has an infinitely large value at the channel bottom and a zero value at the water surface. Based on this formula and the logarithmic ve- locity profile, a theoretical elementary function for the transport rate of a suspended load is developed. This equation improves the Einstein equation in which the unit-width suspended sediment discharge must be solved by numerical integration and a contra- diction between the lower limit of the integral and that of velocity distribution exists.展开更多
Via the valuable opportunity of the Three Gorges Reservoir (TGR) 135-m filling in June 2003, the Yangtze discharge and suspended sediment concentration (SSC) entering the estuary during the period from 15 May to 15 Ju...Via the valuable opportunity of the Three Gorges Reservoir (TGR) 135-m filling in June 2003, the Yangtze discharge and suspended sediment concentration (SSC) entering the estuary during the period from 15 May to 15 July 2003 were analyzed to examine the instant effects of the filling on them. The Yangtze discharge and SSC entering the estuary in the periods before, during and after the filling clearly indicated three phases: 1) the pre-storage phase characterized by natural conditions, in which the SSC increased with increasing water discharge; 2) the storage phase, during which the SSC decreased dramatically with decreasing water discharge; and 3) the post-storage phase, during which both the SSC and water discharge remained at relatively low levels first until the end of June, then the SSC increased gradually with increasing water discharge. It seems that the times for the instant effects of the decreasing discharge downstream from the upper Yangtze on the Yangtze discharge and SSC entering the estuary due to the TGR 135-m filling to take place were about 5 d and 1 d respectively, while both were about 18 d for those of the increasing discharge. This probably reflects the buffering and resultantly hysteresis of the 1800-km stretch from the upper Yangtze to the estuary. The results are helpful for scientific and hydrological investigation of the Yangtze mainstream downstream from the TGR Dam and of the estuarine and adjacent coastal waters.展开更多
In the current study, the efficiency of Wavelet-based Least Square Support Vector Machine (WLSSVM) model was examined for prediction of daily and monthly Suspended Sediment Load (SSL) of the Mississippi River. For...In the current study, the efficiency of Wavelet-based Least Square Support Vector Machine (WLSSVM) model was examined for prediction of daily and monthly Suspended Sediment Load (SSL) of the Mississippi River. For this purpose, in the first step, SSL was predicted via ad hoc LSSVM and Artificial Neural Network (ANN) models; then, streamflow and SSL data were decomposed into sub- signals via wavelet, and these decomposed sub-time series were imposed to LSSVM and ANN to simulate discharge-SSL relationship. Finally, the ability of WLSSVM was compared with other models in multi- step-ahead SSL predictions. The results showed that in daily SSL prediction, LSSVM has better outcomes with Determination Coefficient (DC)=o.92 than ad hoc ANN with DC=o.88. However unlike daily SSL, in monthly modeling, ANN has a bit accurate upshot. WLSSVM and wavelet-based ANN (WANN) models showed same consequences in daily and different in monthly SSL predictions, and adding wavelet led to more accuracy of LSSVM and ANN. Furthermore, conjunction of wavelet to LSSVM and ANN evaluated via multi-step-ahead SSL predictions and, e.g., DCLssVM=0.4 was increased to the DCwLsSVM=0.71 in 7- day ahead SSL prediction. In addition, WLSSVM outperformed WANN by increment of time horizon prediction.展开更多
Modeling sediment transport depends on several parameters, such as suspended sediment concentration (SSC), shear stress, and settling velocity. To assess the ability of Pulse-Coherent Acoustic Doppler Profiling (PC...Modeling sediment transport depends on several parameters, such as suspended sediment concentration (SSC), shear stress, and settling velocity. To assess the ability of Pulse-Coherent Acoustic Doppler Profiling (PC-ADP) to non-intrusively quantify spatial and temporal SSC and settling velocity at seabed, a field experiment was conducted in the Beibu Gulf (Tonkin Gulf), in the South China Sea. The spatial profiles and temporal variations in SSC at 1 m above bottom were derived from PC-ADP acoustic backscatter intensity determinations after being calibrated with the optical backscatter sensor (OBS) measurements at the same elevation. The PC-ADP and OBS results agreed well. The temporal settling velocity obtained from Rouse profiles agreed well with the Soulsby formula based on size information by LISST (laser in situ scattering and transmissometry). Tides and tidal currents are diurnal in the gulf. SSC increased with increasing ebb and flood flow, and it rapidly decreased with the increase of distance from the seabed. The maximum SSC at 0.16 m and 1.3 m above bottom reached 816 mg/L and 490 mg/L during spring tides, respectively. The sediments consisted of mineral particles 23-162 μm in diameter and 0.05-2.04 crn/s in settling velocity. Generally, both the SSC and settling velocity followed variations in the bottom friction. Results suggest that PC-ADP is able to provide reasonable SSC and settling velocity measurements of both profiles and time series for a long study period.展开更多
This paper synthesized the principal land denudation processes and their role in determining riverine suspended sediment yields(SSY) in two typical geographical environments of the Upper Yangtze River Basin in China a...This paper synthesized the principal land denudation processes and their role in determining riverine suspended sediment yields(SSY) in two typical geographical environments of the Upper Yangtze River Basin in China and the Volga River Basin in Eastern Europe. In the Upper Yangtze River Basin, natural factors including topography, climate,lithology and tectonic activity are responsible for the spatial variation in the magnitude of denudation rates.Human disturbances have contributed to the temporal changes of soil erosion and fluvial SSY during the past decades. On one hand, land use change caused by deforestation and land reclamation has played an important role in the acceleration of sediment production from the central hilly area and lower Jinsha catchment; On the other hand, diverse soil conservation practices(e.g., reforestation,terracing) have contributed to a reduction of soil erosion and sediment production since the late 1980 s.It was difficult to explicitly decouple the effect of mitigation measures in the Lower Jinsha River Basindue to the complexity associated with sediment redistribution within river channels(active channel migration and significant sedimentation). The whole basin can be subdivided into seven sub-regions according to the different proportional inputs of principal denudation processes to riverine SSY. In the Volga River Basin, anthropogenic sheet, rill and gully erosion are the predominant denudation processes in the southern region, while channel bank and bed erosion constitutes the main source of riverine suspended sediment flux in the northern part of the basin. Distribution of cultivated lands significantly determined the intensity of denudation processes.Local relief characteristics also considerably influence soil erosion rates and SSY in the southern Volga River Basin. Lithology, soil cover and climate conditions determined the spatial distribution of sheet, rill and gully erosion intensity, but they play a secondary role in SSY spatial variation.展开更多
Over the last several decades,various sediment transport capacity formulations have been used by geomorphologists and engineers to calculate fluvial morphological changes.However,it remains poorly understood if the ad...Over the last several decades,various sediment transport capacity formulations have been used by geomorphologists and engineers to calculate fluvial morphological changes.However,it remains poorly understood if the adaptation to capacity could be fulfilled instantly in response to differing inflow discharges and sediment supplies,and thus if the calculation of morphological changes in rivers based on the assumed capacity status is fully justified.Here we present a numerical investigation on this issue.The distance required for sediment transport to adapt to capacity(i.e.,adaptation-to-capacity length) of both bed load and suspended sediment transport is computationally studied using a coupled shallow water hydrodynamic model,in line with varied inlet sediment concentrations.It is found that the adaptation-to-capacity length generally decreases as the Rouse number increases,irrespective of whether the inlet sediment concentration increases or reduces.For cases with vanishing inlet sediment concentration a unified relationship is found between the adaptation-to-capacity length and the Rouse number.Quantitatively,the adaptation-to-capacity length of bed load sediment is limited to tens of times of the flow depth,whilst that of suspended sediment increases substantially with decreasing Rouse number and can be up to hundreds of times of the flow depth.The present finding concurs that bed load sediment transport can adapt to capacity much more rapidly than suspended sediment transport,and it facilitates a quantitative criterion on which the applicability of bed load or suspended sediment transport capacity for natural rivers can be readily assessed.展开更多
基金Project (Nos. 50079025 and 40231017) supported by the National Natural Science Foundation of China
文摘A simple formula is proposed to predict the vertical distribution of a suspended load concentration in a 2D steady turbulent flow. The proposed formula significantly improves the well-known Rouse formula where sediment concentration has an infinitely large value at the channel bottom and a zero value at the water surface. Based on this formula and the logarithmic ve- locity profile, a theoretical elementary function for the transport rate of a suspended load is developed. This equation improves the Einstein equation in which the unit-width suspended sediment discharge must be solved by numerical integration and a contra- diction between the lower limit of the integral and that of velocity distribution exists.
基金supported by the National Basic Research Program of China (2002CB412400)the Natural Science Foundation of Shandong Province (Y2007E14)+1 种基金the Doctoral Fund of Ministry of Education of China (200804231011)the Key Lab of Submarine Geosciences and Prospecting Techniques of the Ministry of Education
文摘Via the valuable opportunity of the Three Gorges Reservoir (TGR) 135-m filling in June 2003, the Yangtze discharge and suspended sediment concentration (SSC) entering the estuary during the period from 15 May to 15 July 2003 were analyzed to examine the instant effects of the filling on them. The Yangtze discharge and SSC entering the estuary in the periods before, during and after the filling clearly indicated three phases: 1) the pre-storage phase characterized by natural conditions, in which the SSC increased with increasing water discharge; 2) the storage phase, during which the SSC decreased dramatically with decreasing water discharge; and 3) the post-storage phase, during which both the SSC and water discharge remained at relatively low levels first until the end of June, then the SSC increased gradually with increasing water discharge. It seems that the times for the instant effects of the decreasing discharge downstream from the upper Yangtze on the Yangtze discharge and SSC entering the estuary due to the TGR 135-m filling to take place were about 5 d and 1 d respectively, while both were about 18 d for those of the increasing discharge. This probably reflects the buffering and resultantly hysteresis of the 1800-km stretch from the upper Yangtze to the estuary. The results are helpful for scientific and hydrological investigation of the Yangtze mainstream downstream from the TGR Dam and of the estuarine and adjacent coastal waters.
基金supported by the University of Tabriz under grant No. 1117394325
文摘In the current study, the efficiency of Wavelet-based Least Square Support Vector Machine (WLSSVM) model was examined for prediction of daily and monthly Suspended Sediment Load (SSL) of the Mississippi River. For this purpose, in the first step, SSL was predicted via ad hoc LSSVM and Artificial Neural Network (ANN) models; then, streamflow and SSL data were decomposed into sub- signals via wavelet, and these decomposed sub-time series were imposed to LSSVM and ANN to simulate discharge-SSL relationship. Finally, the ability of WLSSVM was compared with other models in multi- step-ahead SSL predictions. The results showed that in daily SSL prediction, LSSVM has better outcomes with Determination Coefficient (DC)=o.92 than ad hoc ANN with DC=o.88. However unlike daily SSL, in monthly modeling, ANN has a bit accurate upshot. WLSSVM and wavelet-based ANN (WANN) models showed same consequences in daily and different in monthly SSL predictions, and adding wavelet led to more accuracy of LSSVM and ANN. Furthermore, conjunction of wavelet to LSSVM and ANN evaluated via multi-step-ahead SSL predictions and, e.g., DCLssVM=0.4 was increased to the DCwLsSVM=0.71 in 7- day ahead SSL prediction. In addition, WLSSVM outperformed WANN by increment of time horizon prediction.
基金Supported by Major Programs of the Chinese Academy of Sciences (No. H42032602)the National Natural Science Foundation of China (No. 470776061)
文摘Modeling sediment transport depends on several parameters, such as suspended sediment concentration (SSC), shear stress, and settling velocity. To assess the ability of Pulse-Coherent Acoustic Doppler Profiling (PC-ADP) to non-intrusively quantify spatial and temporal SSC and settling velocity at seabed, a field experiment was conducted in the Beibu Gulf (Tonkin Gulf), in the South China Sea. The spatial profiles and temporal variations in SSC at 1 m above bottom were derived from PC-ADP acoustic backscatter intensity determinations after being calibrated with the optical backscatter sensor (OBS) measurements at the same elevation. The PC-ADP and OBS results agreed well. The temporal settling velocity obtained from Rouse profiles agreed well with the Soulsby formula based on size information by LISST (laser in situ scattering and transmissometry). Tides and tidal currents are diurnal in the gulf. SSC increased with increasing ebb and flood flow, and it rapidly decreased with the increase of distance from the seabed. The maximum SSC at 0.16 m and 1.3 m above bottom reached 816 mg/L and 490 mg/L during spring tides, respectively. The sediments consisted of mineral particles 23-162 μm in diameter and 0.05-2.04 crn/s in settling velocity. Generally, both the SSC and settling velocity followed variations in the bottom friction. Results suggest that PC-ADP is able to provide reasonable SSC and settling velocity measurements of both profiles and time series for a long study period.
基金support for this study was jointly provided by the Chinese Academy of Sciences (No. ZCX2-XB3-09)the Ministry of Science and Technology of China (No. 2011BAD31B03)
文摘This paper synthesized the principal land denudation processes and their role in determining riverine suspended sediment yields(SSY) in two typical geographical environments of the Upper Yangtze River Basin in China and the Volga River Basin in Eastern Europe. In the Upper Yangtze River Basin, natural factors including topography, climate,lithology and tectonic activity are responsible for the spatial variation in the magnitude of denudation rates.Human disturbances have contributed to the temporal changes of soil erosion and fluvial SSY during the past decades. On one hand, land use change caused by deforestation and land reclamation has played an important role in the acceleration of sediment production from the central hilly area and lower Jinsha catchment; On the other hand, diverse soil conservation practices(e.g., reforestation,terracing) have contributed to a reduction of soil erosion and sediment production since the late 1980 s.It was difficult to explicitly decouple the effect of mitigation measures in the Lower Jinsha River Basindue to the complexity associated with sediment redistribution within river channels(active channel migration and significant sedimentation). The whole basin can be subdivided into seven sub-regions according to the different proportional inputs of principal denudation processes to riverine SSY. In the Volga River Basin, anthropogenic sheet, rill and gully erosion are the predominant denudation processes in the southern region, while channel bank and bed erosion constitutes the main source of riverine suspended sediment flux in the northern part of the basin. Distribution of cultivated lands significantly determined the intensity of denudation processes.Local relief characteristics also considerably influence soil erosion rates and SSY in the southern Volga River Basin. Lithology, soil cover and climate conditions determined the spatial distribution of sheet, rill and gully erosion intensity, but they play a secondary role in SSY spatial variation.
基金funded by Natural Science Foundation of China (Grants Nos. 11172217, 10932012 and 10972164)
文摘Over the last several decades,various sediment transport capacity formulations have been used by geomorphologists and engineers to calculate fluvial morphological changes.However,it remains poorly understood if the adaptation to capacity could be fulfilled instantly in response to differing inflow discharges and sediment supplies,and thus if the calculation of morphological changes in rivers based on the assumed capacity status is fully justified.Here we present a numerical investigation on this issue.The distance required for sediment transport to adapt to capacity(i.e.,adaptation-to-capacity length) of both bed load and suspended sediment transport is computationally studied using a coupled shallow water hydrodynamic model,in line with varied inlet sediment concentrations.It is found that the adaptation-to-capacity length generally decreases as the Rouse number increases,irrespective of whether the inlet sediment concentration increases or reduces.For cases with vanishing inlet sediment concentration a unified relationship is found between the adaptation-to-capacity length and the Rouse number.Quantitatively,the adaptation-to-capacity length of bed load sediment is limited to tens of times of the flow depth,whilst that of suspended sediment increases substantially with decreasing Rouse number and can be up to hundreds of times of the flow depth.The present finding concurs that bed load sediment transport can adapt to capacity much more rapidly than suspended sediment transport,and it facilitates a quantitative criterion on which the applicability of bed load or suspended sediment transport capacity for natural rivers can be readily assessed.