The minimum fluid velocity to maintain particles just suspendedwas deduced, and the theoretical analysis shows that the minimumvelocity is influenced by the properties of the solid and liquid, notby the operational co...The minimum fluid velocity to maintain particles just suspendedwas deduced, and the theoretical analysis shows that the minimumvelocity is influenced by the properties of the solid and liquid, notby the operational conditions. For justification, the local minimumvelocity at the bottom of the tank was measured by a bi- electrodeconductivity probe, in a square-sectioned stirred tank (0.75m×0.75×1.0m) with the glass beads-water system. The experiments showed thatthe fluid velocities for the same suspension state were identicaldespite that the power Dissipated per unite mass was not the sameunder different configuration and operation. Both theoreticalanalysis And experimental results indicate that the off-bottomsuspension is controlled by the local fluid flow over the bottom Ofthe stirred tank.展开更多
Single-phase Ag2Al intermetallic nanoparticles, and Ag and Al metallic nanoparticles were synthesized by the flow-levitation (FL) method. Measurements of d-spacings from X-ray diffraction and electron diffraction co...Single-phase Ag2Al intermetallic nanoparticles, and Ag and Al metallic nanoparticles were synthesized by the flow-levitation (FL) method. Measurements of d-spacings from X-ray diffraction and electron diffraction confirmed that the intermetallic nanoparticles had the hexagonal Ag2Al structure. The morphology, crystal structure and chemical composition of Ag2Al nanoparticles were investigated by transmission electron microscopy, X-ray diffraction and induction-coupled plasma spectroscopy. A thin amorphous coating was formed around the particles when exposed to air. Based on the XPS measurements, the surface coating of the Ag2Al nanoparticles could most likely be aluminum oxide or silver aluminum oxide. Therefore, the single-phase nanocrystalline Ag2Al intermetallic compound particles can be produced by adjusting some experimental parameters in FL method.展开更多
An Acoustic Doppler Current Profiler (ADCP) observation site was set up in the Western South Yellow Sea from 2012 to 2013 to study the local suspended particle matters (SPM) distribution pattern. The SPM concentra...An Acoustic Doppler Current Profiler (ADCP) observation site was set up in the Western South Yellow Sea from 2012 to 2013 to study the local suspended particle matters (SPM) distribution pattern. The SPM concentration could be semi-quantitatively represented by backscatter intensity (Sv), converted by the echo intensity (E/) of ADCP. Results show two types of SPM in the water column: the quasi-biological SPM and quasi-mineral SPM. The quasi-biological SPM mainly exists in summer half year and is con- centrated above the thermocline. It has periodically diurnal variations with high concentration at night and low concentration in the daytime. The quasi-mineral SPM is located in lower part of the water column, with similar relation to monthly tidal current variation all year round. However, the daily quasi-mineral SPM distribution patterns vary between summer and winter half year. The sunlight is thought to be the origin factor leading to the diurnally vertical motion of the biological features, which might cause the diurnal Sv variation. Unlike in winter half year when tidal current is relatively single driving force of the monthly SPM pattern, the high speed current near the thermocline is also responsible for the concentration of quasi-mineral SPM in summer half year. The sediment input difference between summer and winter half year contribute to the varied daily variation of quasi-mineral SPM with re-suspended SPM ir~ winter and sediments from Yellow Sea Mud Area (YSMA) in summer. The seasonal variations in hydrodynamics, water structure and heavy-wind incidents are the primary factors influencing the differential seasonal SPM distribution patterns.展开更多
文摘The minimum fluid velocity to maintain particles just suspendedwas deduced, and the theoretical analysis shows that the minimumvelocity is influenced by the properties of the solid and liquid, notby the operational conditions. For justification, the local minimumvelocity at the bottom of the tank was measured by a bi- electrodeconductivity probe, in a square-sectioned stirred tank (0.75m×0.75×1.0m) with the glass beads-water system. The experiments showed thatthe fluid velocities for the same suspension state were identicaldespite that the power Dissipated per unite mass was not the sameunder different configuration and operation. Both theoreticalanalysis And experimental results indicate that the off-bottomsuspension is controlled by the local fluid flow over the bottom Ofthe stirred tank.
基金Project (10804101) supported by the National Natural Science Foundation of China
文摘Single-phase Ag2Al intermetallic nanoparticles, and Ag and Al metallic nanoparticles were synthesized by the flow-levitation (FL) method. Measurements of d-spacings from X-ray diffraction and electron diffraction confirmed that the intermetallic nanoparticles had the hexagonal Ag2Al structure. The morphology, crystal structure and chemical composition of Ag2Al nanoparticles were investigated by transmission electron microscopy, X-ray diffraction and induction-coupled plasma spectroscopy. A thin amorphous coating was formed around the particles when exposed to air. Based on the XPS measurements, the surface coating of the Ag2Al nanoparticles could most likely be aluminum oxide or silver aluminum oxide. Therefore, the single-phase nanocrystalline Ag2Al intermetallic compound particles can be produced by adjusting some experimental parameters in FL method.
基金supported by the National Natural Science Foundation of China (Grant No. 41030856)National 973 Project of China (Grant No. 2005CB422304)+1 种基金the Project of Taishan Scholarsupport of the R/V Dongfanghong 2 and Shared Voyage of the National Nature Science Foundation of China
文摘An Acoustic Doppler Current Profiler (ADCP) observation site was set up in the Western South Yellow Sea from 2012 to 2013 to study the local suspended particle matters (SPM) distribution pattern. The SPM concentration could be semi-quantitatively represented by backscatter intensity (Sv), converted by the echo intensity (E/) of ADCP. Results show two types of SPM in the water column: the quasi-biological SPM and quasi-mineral SPM. The quasi-biological SPM mainly exists in summer half year and is con- centrated above the thermocline. It has periodically diurnal variations with high concentration at night and low concentration in the daytime. The quasi-mineral SPM is located in lower part of the water column, with similar relation to monthly tidal current variation all year round. However, the daily quasi-mineral SPM distribution patterns vary between summer and winter half year. The sunlight is thought to be the origin factor leading to the diurnally vertical motion of the biological features, which might cause the diurnal Sv variation. Unlike in winter half year when tidal current is relatively single driving force of the monthly SPM pattern, the high speed current near the thermocline is also responsible for the concentration of quasi-mineral SPM in summer half year. The sediment input difference between summer and winter half year contribute to the varied daily variation of quasi-mineral SPM with re-suspended SPM ir~ winter and sediments from Yellow Sea Mud Area (YSMA) in summer. The seasonal variations in hydrodynamics, water structure and heavy-wind incidents are the primary factors influencing the differential seasonal SPM distribution patterns.