Based on ANSYS/LS-DYNA, the dynamics analysis software, and using nonlinear dynamic finite element method, the process of a submarine pipeline impacted by dropped objects is simulated, Some conclusions are drawn: Fir...Based on ANSYS/LS-DYNA, the dynamics analysis software, and using nonlinear dynamic finite element method, the process of a submarine pipeline impacted by dropped objects is simulated, Some conclusions are drawn: First, the damage depth of suspended pipe is smaller than that of the bare pipe in case of the same fall energy, and with the increase of fall energy, the difference grows; Second, with the falling object's speed and mass rising, the deformation of pipeline intensifies at the impact site and the maximum vibration amplitude of submarine pipeline increases; Third, when the fall energy is equal, the smaller the contact area of falling objects and pipeline is, the greater the damage depth of pipeline becomes; Fourth, changes of seabed soil parameters (shear elastic modulus, internal friction angle, density) have less influence on the suspended pipeline's dent depths and maximum vibration amplitude,展开更多
To make sure that the nodule collector can walk on the soft sediments of seafloor effectively, suspension principle of deep-ocean nodule collector is proposed. The supporting and driving mechanisms are separated to av...To make sure that the nodule collector can walk on the soft sediments of seafloor effectively, suspension principle of deep-ocean nodule collector is proposed. The supporting and driving mechanisms are separated to avoid collector sinking. The supporting mechanism is a streamlined body with large and smooth supporting area. The grounding pressure is reduced to 0.5- 1 N/cm2 to make sure that the sinkage is limited. The impellers serve as the driving mechanism to supply enough driving power. The position between the supporting mechanism and the driving mechanism can be adjusted according to the operating condition to decrease the walking resistance and to increase driving efficiency. The test results indicate that the collector can walk on the surface of the soft sediments with the limited sinkage. The traction forces were up to 800 kg and the sinkage of the impeller was under the limitation.展开更多
The key concept of spectrum response estimation with commercial software,such as the SESAM software tool,typically includes two main steps:finding a suitable loading spectrum and computing the response amplitude opera...The key concept of spectrum response estimation with commercial software,such as the SESAM software tool,typically includes two main steps:finding a suitable loading spectrum and computing the response amplitude operators(RAOs) subjected to a frequency-specified wave component.In this paper,we propose a nontraditional spectrum response estimation method that uses a numerical representation of the retardation functions.Based on estimated added mass and damping matrices of the structure,we decompose and replace the convolution terms with a series of poles and corresponding residues in the Laplace domain.Then,we estimate the power density corresponding to each frequency component using the improved periodogram method.The advantage of this approach is that the frequency-dependent motion equations in the time domain can be transformed into the Laplace domain without requiring Laplace-domain expressions for the added mass and damping.To validate the proposed method,we use a numerical semi-submerged pontoon from the SESAM.The numerical results show that the responses of the proposed method match well with those obtained from the traditional method.Furthermore,the estimated spectrum also matches well,which indicates its potential application to deep-water floating structures.展开更多
文摘Based on ANSYS/LS-DYNA, the dynamics analysis software, and using nonlinear dynamic finite element method, the process of a submarine pipeline impacted by dropped objects is simulated, Some conclusions are drawn: First, the damage depth of suspended pipe is smaller than that of the bare pipe in case of the same fall energy, and with the increase of fall energy, the difference grows; Second, with the falling object's speed and mass rising, the deformation of pipeline intensifies at the impact site and the maximum vibration amplitude of submarine pipeline increases; Third, when the fall energy is equal, the smaller the contact area of falling objects and pipeline is, the greater the damage depth of pipeline becomes; Fourth, changes of seabed soil parameters (shear elastic modulus, internal friction angle, density) have less influence on the suspended pipeline's dent depths and maximum vibration amplitude,
基金Project(2012AA091201) supported by the National High Technology Research and Development Program of China
文摘To make sure that the nodule collector can walk on the soft sediments of seafloor effectively, suspension principle of deep-ocean nodule collector is proposed. The supporting and driving mechanisms are separated to avoid collector sinking. The supporting mechanism is a streamlined body with large and smooth supporting area. The grounding pressure is reduced to 0.5- 1 N/cm2 to make sure that the sinkage is limited. The impellers serve as the driving mechanism to supply enough driving power. The position between the supporting mechanism and the driving mechanism can be adjusted according to the operating condition to decrease the walking resistance and to increase driving efficiency. The test results indicate that the collector can walk on the surface of the soft sediments with the limited sinkage. The traction forces were up to 800 kg and the sinkage of the impeller was under the limitation.
基金the financial support of the National Natural Science Foundation of China(Nos.5152 2906,51479184,51609219)the Excellent Youth Foundation of Shandong Scientific Committee(No.JQ201512)the Taishan Scholars Program of Shandong Province
文摘The key concept of spectrum response estimation with commercial software,such as the SESAM software tool,typically includes two main steps:finding a suitable loading spectrum and computing the response amplitude operators(RAOs) subjected to a frequency-specified wave component.In this paper,we propose a nontraditional spectrum response estimation method that uses a numerical representation of the retardation functions.Based on estimated added mass and damping matrices of the structure,we decompose and replace the convolution terms with a series of poles and corresponding residues in the Laplace domain.Then,we estimate the power density corresponding to each frequency component using the improved periodogram method.The advantage of this approach is that the frequency-dependent motion equations in the time domain can be transformed into the Laplace domain without requiring Laplace-domain expressions for the added mass and damping.To validate the proposed method,we use a numerical semi-submerged pontoon from the SESAM.The numerical results show that the responses of the proposed method match well with those obtained from the traditional method.Furthermore,the estimated spectrum also matches well,which indicates its potential application to deep-water floating structures.