This paper presents the results of application of a 3D (three-dimensional) numerical model to study on MTZ (maximum turbidity zone) in the coastal zone of Mekong River Delta. In this study, a 3D system model with ...This paper presents the results of application of a 3D (three-dimensional) numerical model to study on MTZ (maximum turbidity zone) in the coastal zone of Mekong River Delta. In this study, a 3D system model with combination of hydrodynamics--wave and suspended sediment transport was set up and validated with measured data in the study area. Based on calculated scenarios for the flood and the dry season, the results have shown appearance of MTZs in the coastal zone of Mekong River with suspended sediment concentration prevalent of 0.04-0.07 kg·m^3 (the dry season) and 0.05-0.1kg·m^3 (the flood season). The position and MTZs scale change with the interaction between fresh water and tidal oscillations. The MTZ occur more in the dry seasons compared to the wet season. The MTZs are prevalent located far away from estuaries about in 12-22 km (in the dry season), and 5-15 km in the flood season.展开更多
Study of the major Asian rivers discharge to the ocean reveals variations of their water discharges and sediment loads, and local characteristics of river sediment concentrations. On the basis of this, the Asian river...Study of the major Asian rivers discharge to the ocean reveals variations of their water discharges and sediment loads, and local characteristics of river sediment concentrations. On the basis of this, the Asian rivers fall into three regions, including Eurasia Arctic, East Asia, Southeast and South Asia Regions. The Eurasia Arctic Region is characterized by the lowest sediment concentration and load, while the East Asia Region is of the highest sediment concentration and higher sediment load, and the South-East and South Asia Region yields higher sediment concentration and highest sediment load.The sediment loads of these regions are mainly controlled by climate, geomorphology and tectonic activity. The Eurasia Arctic rivers with large basin areas and water discharge, drain low relief which consists of tundra sediment, thus causing the lowest sediment load. The East Asia rivers with small basin areas and lowest water discharges, drain extensive loess plateau, and transport most erodible loess material, which results in highest sediment concentration. The SE and South Asia rivers originating from the Tibet Plateau have large basin areas and the largest water discharges because of the Summer Monsoon and high rainfall influence, causing the highest sediment load.In Asia, tectonic motion of the Tibet Plateau plays an important role. Those large rivers originating from the Tibet Plateau transport about 50% of the world river sediment load to ocean annually, forming large estuaries and deltas, and consequently exerting a great influence on sedimentation in the coastal zone and shelves.展开更多
Over the last several decades,various sediment transport capacity formulations have been used by geomorphologists and engineers to calculate fluvial morphological changes.However,it remains poorly understood if the ad...Over the last several decades,various sediment transport capacity formulations have been used by geomorphologists and engineers to calculate fluvial morphological changes.However,it remains poorly understood if the adaptation to capacity could be fulfilled instantly in response to differing inflow discharges and sediment supplies,and thus if the calculation of morphological changes in rivers based on the assumed capacity status is fully justified.Here we present a numerical investigation on this issue.The distance required for sediment transport to adapt to capacity(i.e.,adaptation-to-capacity length) of both bed load and suspended sediment transport is computationally studied using a coupled shallow water hydrodynamic model,in line with varied inlet sediment concentrations.It is found that the adaptation-to-capacity length generally decreases as the Rouse number increases,irrespective of whether the inlet sediment concentration increases or reduces.For cases with vanishing inlet sediment concentration a unified relationship is found between the adaptation-to-capacity length and the Rouse number.Quantitatively,the adaptation-to-capacity length of bed load sediment is limited to tens of times of the flow depth,whilst that of suspended sediment increases substantially with decreasing Rouse number and can be up to hundreds of times of the flow depth.The present finding concurs that bed load sediment transport can adapt to capacity much more rapidly than suspended sediment transport,and it facilitates a quantitative criterion on which the applicability of bed load or suspended sediment transport capacity for natural rivers can be readily assessed.展开更多
There are some bad impacts from a critical land such as flood in rainy season and dryness in dry season. Long dryness could cause shortage of water for human consumption, industry and agriculture. Prevention has been ...There are some bad impacts from a critical land such as flood in rainy season and dryness in dry season. Long dryness could cause shortage of water for human consumption, industry and agriculture. Prevention has been made to avoid the both bad impacts by building hydraulic structures like reservoirs and ponds in order to reduce the peak flow during the rainy season and to store the water for use during the dry season. However, they gradually become full of sediment. This will make them work insufficiently and will cause high maintenance cost. Moreover, wells in agriculture field used as retention also suffer dryness to make crop failure. This study aims to develop a model of pond for conservation of land and water in non irrigated land. Community participation is crucial in order to solve the flood and dryness problems. The community, especially the farmers will participate actively in the implementation and maintenance of the model. There are benefits in using the pond model such as: (1) to control sediment transport to the rivers, reservoir or other hydraulic structures; (2) to reduce flood rate; (3) to increase ground water recharge; (4) to contain water for agriculture and (5) to control the fertility of land. The cost of making a unit of model (sedrainpond) of 1.5 m diameter and 1.5 meter depth is relatively cheap between $10 to $20 (US), and the maintenance is done by the farmers. When the pond model becomes functional, besides containing water in the rainy season, the water can be used to sustain water for agriculture in the dry season to avoid any crop failure. When the pond becomes dry, the farmers can harvest the suspended load sediment such as clay or silt to spread onto their land to keep its fertility.展开更多
文摘This paper presents the results of application of a 3D (three-dimensional) numerical model to study on MTZ (maximum turbidity zone) in the coastal zone of Mekong River Delta. In this study, a 3D system model with combination of hydrodynamics--wave and suspended sediment transport was set up and validated with measured data in the study area. Based on calculated scenarios for the flood and the dry season, the results have shown appearance of MTZs in the coastal zone of Mekong River with suspended sediment concentration prevalent of 0.04-0.07 kg·m^3 (the dry season) and 0.05-0.1kg·m^3 (the flood season). The position and MTZs scale change with the interaction between fresh water and tidal oscillations. The MTZ occur more in the dry seasons compared to the wet season. The MTZs are prevalent located far away from estuaries about in 12-22 km (in the dry season), and 5-15 km in the flood season.
基金The Project is sponsored by the Chinese National Nature Science Foundation (49676288) Scientific Research Foundation for the Returned Overseas Chinese Scholars of the Ministry of Education of China and the Russian Foundation for Fundamental Research (Pr
文摘Study of the major Asian rivers discharge to the ocean reveals variations of their water discharges and sediment loads, and local characteristics of river sediment concentrations. On the basis of this, the Asian rivers fall into three regions, including Eurasia Arctic, East Asia, Southeast and South Asia Regions. The Eurasia Arctic Region is characterized by the lowest sediment concentration and load, while the East Asia Region is of the highest sediment concentration and higher sediment load, and the South-East and South Asia Region yields higher sediment concentration and highest sediment load.The sediment loads of these regions are mainly controlled by climate, geomorphology and tectonic activity. The Eurasia Arctic rivers with large basin areas and water discharge, drain low relief which consists of tundra sediment, thus causing the lowest sediment load. The East Asia rivers with small basin areas and lowest water discharges, drain extensive loess plateau, and transport most erodible loess material, which results in highest sediment concentration. The SE and South Asia rivers originating from the Tibet Plateau have large basin areas and the largest water discharges because of the Summer Monsoon and high rainfall influence, causing the highest sediment load.In Asia, tectonic motion of the Tibet Plateau plays an important role. Those large rivers originating from the Tibet Plateau transport about 50% of the world river sediment load to ocean annually, forming large estuaries and deltas, and consequently exerting a great influence on sedimentation in the coastal zone and shelves.
基金funded by Natural Science Foundation of China (Grants Nos. 11172217, 10932012 and 10972164)
文摘Over the last several decades,various sediment transport capacity formulations have been used by geomorphologists and engineers to calculate fluvial morphological changes.However,it remains poorly understood if the adaptation to capacity could be fulfilled instantly in response to differing inflow discharges and sediment supplies,and thus if the calculation of morphological changes in rivers based on the assumed capacity status is fully justified.Here we present a numerical investigation on this issue.The distance required for sediment transport to adapt to capacity(i.e.,adaptation-to-capacity length) of both bed load and suspended sediment transport is computationally studied using a coupled shallow water hydrodynamic model,in line with varied inlet sediment concentrations.It is found that the adaptation-to-capacity length generally decreases as the Rouse number increases,irrespective of whether the inlet sediment concentration increases or reduces.For cases with vanishing inlet sediment concentration a unified relationship is found between the adaptation-to-capacity length and the Rouse number.Quantitatively,the adaptation-to-capacity length of bed load sediment is limited to tens of times of the flow depth,whilst that of suspended sediment increases substantially with decreasing Rouse number and can be up to hundreds of times of the flow depth.The present finding concurs that bed load sediment transport can adapt to capacity much more rapidly than suspended sediment transport,and it facilitates a quantitative criterion on which the applicability of bed load or suspended sediment transport capacity for natural rivers can be readily assessed.
文摘There are some bad impacts from a critical land such as flood in rainy season and dryness in dry season. Long dryness could cause shortage of water for human consumption, industry and agriculture. Prevention has been made to avoid the both bad impacts by building hydraulic structures like reservoirs and ponds in order to reduce the peak flow during the rainy season and to store the water for use during the dry season. However, they gradually become full of sediment. This will make them work insufficiently and will cause high maintenance cost. Moreover, wells in agriculture field used as retention also suffer dryness to make crop failure. This study aims to develop a model of pond for conservation of land and water in non irrigated land. Community participation is crucial in order to solve the flood and dryness problems. The community, especially the farmers will participate actively in the implementation and maintenance of the model. There are benefits in using the pond model such as: (1) to control sediment transport to the rivers, reservoir or other hydraulic structures; (2) to reduce flood rate; (3) to increase ground water recharge; (4) to contain water for agriculture and (5) to control the fertility of land. The cost of making a unit of model (sedrainpond) of 1.5 m diameter and 1.5 meter depth is relatively cheap between $10 to $20 (US), and the maintenance is done by the farmers. When the pond model becomes functional, besides containing water in the rainy season, the water can be used to sustain water for agriculture in the dry season to avoid any crop failure. When the pond becomes dry, the farmers can harvest the suspended load sediment such as clay or silt to spread onto their land to keep its fertility.