The mechanical and electric characteristics of a cantilever beam micro opto mechanical switch are studied theoretically,with which the dependence of the flexion on the applied voltage is derived,as well as the form...The mechanical and electric characteristics of a cantilever beam micro opto mechanical switch are studied theoretically,with which the dependence of the flexion on the applied voltage is derived,as well as the formula of the threshold voltage.The applied voltage,having no connection with the width of the beam,is in inverse proportion to the square of the beam's length.The deflection at the beam's tip cannot exceed 1/3 of the distance between two adjacent electrodes.These results are the basis of the switch design and development.展开更多
To analyze the influence of movement in shallow-buried working faces with large mining heights on mine pressure manifestation, the key stratum at a working face was categorised using the 1313 top-coal caving face with...To analyze the influence of movement in shallow-buried working faces with large mining heights on mine pressure manifestation, the key stratum at a working face was categorised using the 1313 top-coal caving face with super great mining height under cover as a case study. The research combined theoretical analysis, field measurement, and numerical simulation to analyze the influencing mechanism of key stratum. Moreover, the research results were verified by numerical simulation and indicate that the sub-key stratum is prone to be broken to form a "cantilever beam" structure rather than a stable hinged structure during the excavation of working faces with super great mining heights. When the "cantilever beam" structure is unstable, a low pressure will occur on the working face, and the overlying strata will subside simultaneously with the sub-key stratum to induce the breakage of the primary key stratum: the breakage will further trigger the periodic breakage of sub-key stratum, causing a greater load on the working face. Finally, steps, and strength of weighting in the working face vary to be great or small alternatively. This is the main reason explaining why the 1313 working face shows strong mine pressure manifestation. The results provide theoretical and practical experience for forecasting and controlling mine pressure manifestation.展开更多
It is widely accepted that the singular term plays a leading role in driving domain switching around the crack tip of ferroelectric ceramics.When an applied electric field approaches or even exceeds the coercive one,h...It is widely accepted that the singular term plays a leading role in driving domain switching around the crack tip of ferroelectric ceramics.When an applied electric field approaches or even exceeds the coercive one,however,non-singular terms are no longer negligible and the switching of a large or global scale takes place.To analyze the large scale switching,one has to get a full asymptotic solution to the electric field in the vicinity of the crack tip.Take a double cantilever beam specimen as an example.The derivation of the full electric field is simplified as a mixed boundary value problem of an infinite strip containing a semi-infinite impermeable crack.The boundary value problem is solved by an analytic function and a conformal mapping to yield a full electric field solution in a closed form.Based on the full field solution,the large scale domain switching is examined.The switching zones predicted by the large and small scale switching models are illustrated and compared with each other near the tip of a stationary crack.展开更多
文摘The mechanical and electric characteristics of a cantilever beam micro opto mechanical switch are studied theoretically,with which the dependence of the flexion on the applied voltage is derived,as well as the formula of the threshold voltage.The applied voltage,having no connection with the width of the beam,is in inverse proportion to the square of the beam's length.The deflection at the beam's tip cannot exceed 1/3 of the distance between two adjacent electrodes.These results are the basis of the switch design and development.
基金Project(2015-29)supported by Jiangsu Distinguished Professor,ChinaProject(BRA2015311)supported by the Jiangsu Province Fourth 333 Engineering,China
文摘To analyze the influence of movement in shallow-buried working faces with large mining heights on mine pressure manifestation, the key stratum at a working face was categorised using the 1313 top-coal caving face with super great mining height under cover as a case study. The research combined theoretical analysis, field measurement, and numerical simulation to analyze the influencing mechanism of key stratum. Moreover, the research results were verified by numerical simulation and indicate that the sub-key stratum is prone to be broken to form a "cantilever beam" structure rather than a stable hinged structure during the excavation of working faces with super great mining heights. When the "cantilever beam" structure is unstable, a low pressure will occur on the working face, and the overlying strata will subside simultaneously with the sub-key stratum to induce the breakage of the primary key stratum: the breakage will further trigger the periodic breakage of sub-key stratum, causing a greater load on the working face. Finally, steps, and strength of weighting in the working face vary to be great or small alternatively. This is the main reason explaining why the 1313 working face shows strong mine pressure manifestation. The results provide theoretical and practical experience for forecasting and controlling mine pressure manifestation.
基金sponsored by the National Natural Science Foundation of China (Grant No.10702071)the China Postdoctoral Science Foundation+1 种基金the Shanghai Postdoctoral Scientific Program (Grant No.10R21415800)the Shanghai Leading Academic Discipline Project (Grant No.B302)
文摘It is widely accepted that the singular term plays a leading role in driving domain switching around the crack tip of ferroelectric ceramics.When an applied electric field approaches or even exceeds the coercive one,however,non-singular terms are no longer negligible and the switching of a large or global scale takes place.To analyze the large scale switching,one has to get a full asymptotic solution to the electric field in the vicinity of the crack tip.Take a double cantilever beam specimen as an example.The derivation of the full electric field is simplified as a mixed boundary value problem of an infinite strip containing a semi-infinite impermeable crack.The boundary value problem is solved by an analytic function and a conformal mapping to yield a full electric field solution in a closed form.Based on the full field solution,the large scale domain switching is examined.The switching zones predicted by the large and small scale switching models are illustrated and compared with each other near the tip of a stationary crack.