近年来,主题情感联合模型成为了无监督学习领域的一项重要研究内容,在文本主题挖掘和情感分析等方面均有实际应用。然而,在现实场景中,微博因其文字短小、结构不完整等特征,给主题情感联合模型带来了一定的挑战。因此,围绕微博主题情感...近年来,主题情感联合模型成为了无监督学习领域的一项重要研究内容,在文本主题挖掘和情感分析等方面均有实际应用。然而,在现实场景中,微博因其文字短小、结构不完整等特征,给主题情感联合模型带来了一定的挑战。因此,围绕微博主题情感模型展开相关的研究与改进工作,目前较为流行的主题情感模型——TSMMF模型(Topic Sentiment Model Based on Multi-feature Fusion)中引入了词向量技术,运用多元高斯分布从词向量空间中快速采样邻近词语,并替换掉原Dirichlet多项式分布产生的单词,从而将共现频率低、信息量少的单词转变成突出主题、信息明确的单词,同时使用最近邻搜索算法来进一步提升模型处理大型微博语料库的运行速度,进而提出了GWE-TSMMF模型。对比实验结果表明,GWE-TSMMF模型的平均F1值约为0.718,相比原模型和现有的主流词嵌入主题情感模型(WS-TSWE模型和HST-SCW模型),其微博情感极性的分析效果均有显著提升。展开更多
近年来,以微博为代表的社交媒体在情感分析中备受关注。然而,绝大多数现有的主题情感模型并没有充分考虑到用户性格特征,导致情感分析结果难尽人意。故该文在现有的JST模型基础上进行改进,提出一种基于时间的性格建模方法,将用户性格特...近年来,以微博为代表的社交媒体在情感分析中备受关注。然而,绝大多数现有的主题情感模型并没有充分考虑到用户性格特征,导致情感分析结果难尽人意。故该文在现有的JST模型基础上进行改进,提出一种基于时间的性格建模方法,将用户性格特征纳入主题情感模型中;鉴于微博数据包含大量的表情符号之类的特有信息,为了充分利用表情符号来提升微博情感识别性能,该文将情感符号融入JST模型中,进而提出了一种改进的主题情感联合模型UC-JST(Joint Sentiment/Topic Model Based on User Character)。通过在真实的新浪微博数据集上进行实验,结果表明UC-JST情感分类效果优于JST、TUS-LDA、JUST、TSMMF四种典型的无监督情感分类方法。展开更多
文摘近年来,主题情感联合模型成为了无监督学习领域的一项重要研究内容,在文本主题挖掘和情感分析等方面均有实际应用。然而,在现实场景中,微博因其文字短小、结构不完整等特征,给主题情感联合模型带来了一定的挑战。因此,围绕微博主题情感模型展开相关的研究与改进工作,目前较为流行的主题情感模型——TSMMF模型(Topic Sentiment Model Based on Multi-feature Fusion)中引入了词向量技术,运用多元高斯分布从词向量空间中快速采样邻近词语,并替换掉原Dirichlet多项式分布产生的单词,从而将共现频率低、信息量少的单词转变成突出主题、信息明确的单词,同时使用最近邻搜索算法来进一步提升模型处理大型微博语料库的运行速度,进而提出了GWE-TSMMF模型。对比实验结果表明,GWE-TSMMF模型的平均F1值约为0.718,相比原模型和现有的主流词嵌入主题情感模型(WS-TSWE模型和HST-SCW模型),其微博情感极性的分析效果均有显著提升。
文摘近年来,以微博为代表的社交媒体在情感分析中备受关注。然而,绝大多数现有的主题情感模型并没有充分考虑到用户性格特征,导致情感分析结果难尽人意。故该文在现有的JST模型基础上进行改进,提出一种基于时间的性格建模方法,将用户性格特征纳入主题情感模型中;鉴于微博数据包含大量的表情符号之类的特有信息,为了充分利用表情符号来提升微博情感识别性能,该文将情感符号融入JST模型中,进而提出了一种改进的主题情感联合模型UC-JST(Joint Sentiment/Topic Model Based on User Character)。通过在真实的新浪微博数据集上进行实验,结果表明UC-JST情感分类效果优于JST、TUS-LDA、JUST、TSMMF四种典型的无监督情感分类方法。