为提高情感语音识别的正确率,研究了声学参数的统计特征和时序特征在区分情感中的作用,并提出了一种将两者相融合的情感识别方法。在提取出基本的韵律参数和频谱参数后,首先利用PNN(probab ilistic neura l netw ork)和HMM(h idden m ar...为提高情感语音识别的正确率,研究了声学参数的统计特征和时序特征在区分情感中的作用,并提出了一种将两者相融合的情感识别方法。在提取出基本的韵律参数和频谱参数后,首先利用PNN(probab ilistic neura l netw ork)和HMM(h idden m arkov m ode l)分别对声学参数的统计特征和时序特征进行处理。计算它们各自属于每类情感的概率,获得采用加法规则和乘法规则融合统计特征和时序特征的识别结果。实验结果表明:各组特征在区分情感方面的侧重不尽相同,通过特征融合,平均识别正确率相较单独采用统计特征或时序特征均有提高,在最好情况下达到了92.9%。这说明了该方法的有效性。展开更多
文摘为提高情感语音识别的正确率,研究了声学参数的统计特征和时序特征在区分情感中的作用,并提出了一种将两者相融合的情感识别方法。在提取出基本的韵律参数和频谱参数后,首先利用PNN(probab ilistic neura l netw ork)和HMM(h idden m arkov m ode l)分别对声学参数的统计特征和时序特征进行处理。计算它们各自属于每类情感的概率,获得采用加法规则和乘法规则融合统计特征和时序特征的识别结果。实验结果表明:各组特征在区分情感方面的侧重不尽相同,通过特征融合,平均识别正确率相较单独采用统计特征或时序特征均有提高,在最好情况下达到了92.9%。这说明了该方法的有效性。