期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
商品主观评论的情感细分类模型研究 被引量:3
1
作者 夏火松 朱慧毅 魏凤蕊 《情报杂志》 CSSCI 北大核心 2013年第2期117-120,92,共5页
在现有褒贬性情感分类的研究中,缺乏对商品具体属性情感倾向的分析。基于此,建立细分类模型,将情感分类分为初分类和细分类两个过程。初分类确定商品评论的整体情感倾向,根据初分类的结果对商品的各个属性再次进行情感分类,以确定具体... 在现有褒贬性情感分类的研究中,缺乏对商品具体属性情感倾向的分析。基于此,建立细分类模型,将情感分类分为初分类和细分类两个过程。初分类确定商品评论的整体情感倾向,根据初分类的结果对商品的各个属性再次进行情感分类,以确定具体属性的情感倾向。从而消费者无需阅读具体的文本评论,就可以全面直观地了解商品,缩短做出购买决策的时间,降低决策的复杂度。该模型可作为网上商品销售的一个扩展功能使用,并利用酒店评论文本检测了模型的有效性。同时,论文通过对四种经典的特征算法的测试,发现在情感细分类中互信息(Mutual Information,MI)达到了更高的准确度。 展开更多
关键词 商品主观评论文本挖掘情感细分类情感倾向分析支持向量机(SVM) 人工神经网络(ANN)
下载PDF
Support vector machines for emotion recognition in Chinese speech 被引量:8
2
作者 王治平 赵力 邹采荣 《Journal of Southeast University(English Edition)》 EI CAS 2003年第4期307-310,共4页
Support vector machines (SVMs) are utilized for emotion recognition in Chinese speech in this paper. Both binary class discrimination and the multi class discrimination are discussed. It proves that the emotional fe... Support vector machines (SVMs) are utilized for emotion recognition in Chinese speech in this paper. Both binary class discrimination and the multi class discrimination are discussed. It proves that the emotional features construct a nonlinear problem in the input space, and SVMs based on nonlinear mapping can solve it more effectively than other linear methods. Multi class classification based on SVMs with a soft decision function is constructed to classify the four emotion situations. Compared with principal component analysis (PCA) method and modified PCA method, SVMs perform the best result in multi class discrimination by using nonlinear kernel mapping. 展开更多
关键词 speech signal emotion recognition support vector machines
下载PDF
Novel feature fusion method for speech emotion recognition based on multiple kernel learning
3
作者 金赟 宋鹏 +1 位作者 郑文明 赵力 《Journal of Southeast University(English Edition)》 EI CAS 2013年第2期129-133,共5页
In order to improve the performance of speech emotion recognition, a novel feature fusion method is proposed. Based on the global features, the local information of different kinds of features is utilized. Both the gl... In order to improve the performance of speech emotion recognition, a novel feature fusion method is proposed. Based on the global features, the local information of different kinds of features is utilized. Both the global and the local features are combined together. Moreover, the multiple kernel learning method is adopted. The global features and each kind of local feature are respectively associated with a kernel, and all these kernels are added together with different weights to obtain a mixed kernel for nonlinear mapping. In the reproducing kernel Hilbert space, different kinds of emotional features can be easily classified. In the experiments, the popular Berlin dataset is used, and the optimal parameters of the global and the local kernels are determined by cross-validation. After computing using multiple kernel learning, the weights of all the kernels are obtained, which shows that the formant and intensity features play a key role in speech emotion recognition. The classification results show that the recognition rate is 78. 74% by using the global kernel, and it is 81.10% by using the proposed method, which demonstrates the effectiveness of the proposed method. 展开更多
关键词 speech emotion recognition multiple kemellearning feature fusion support vector machine
下载PDF
连续汉语普通话中基于SVM的说话人情感互相关性算法 被引量:3
4
作者 秦宇强 张雪英 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2011年第S2期154-159,共6页
提出了一种新的基于情感特征提取和借助支持向量机(SVM)分类器(classifier)的情感互相关性算法,并应用于语音情感识别.SVM分类器是利用情感语音信号中互相关性的特征提取进行分类的.利用这种方法对4种情感(愤怒、高兴、悲伤和中立)语音... 提出了一种新的基于情感特征提取和借助支持向量机(SVM)分类器(classifier)的情感互相关性算法,并应用于语音情感识别.SVM分类器是利用情感语音信号中互相关性的特征提取进行分类的.利用这种方法对4种情感(愤怒、高兴、悲伤和中立)语音信号进行情感分类.借助SVM分类器的情感互相关性算法,可以大幅提高情感识别率,并且在识别愤怒情感时准确率甚至可以达到95.04%. 展开更多
关键词 语音情感识别 支持向量 结构风险最小化 情感模式互相关性 情感支持向量
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部