期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于语义规则与RNN模型的在线评论情感分类研究
被引量:
19
1
作者
邵良杉
周玉
《中文信息学报》
CSCD
北大核心
2019年第6期124-131,共8页
为提高互联网中在线评论文本的情感倾向分类准确率,方便消费者和商家准确高效地获取信息,该文提出一种将语义规则方法与深度学习方法相结合的在线评论文本情感分类模型,对基于情感词典的语义规则信息进行扩展,嵌入到常用特征模板中组合...
为提高互联网中在线评论文本的情感倾向分类准确率,方便消费者和商家准确高效地获取信息,该文提出一种将语义规则方法与深度学习方法相结合的在线评论文本情感分类模型,对基于情感词典的语义规则信息进行扩展,嵌入到常用特征模板中组合成更有效的混合特征模板;采用Fisher判别准则方法对混合特征模板进行降维以消除特征间的信息冗余;深度学习模型采用基于LSTM改进的RNN模型,将网络爬取的数据输入到模型进行训练和测试。结果表明,语义规则抽取出的特征包含更多、更准确的情感信息,使得混合特征模板可以更加全面地考虑文本的情感特征粒度;Fisher准则可有效识别出高判别性的低维文本特征,进一步提高改进RNN模型对评论文本的分类性能。
展开更多
关键词
在线评论
情感
分类
递归神经网络
情感语义规则
下载PDF
职称材料
题名
基于语义规则与RNN模型的在线评论情感分类研究
被引量:
19
1
作者
邵良杉
周玉
机构
辽宁工程技术大学系统工程研究所
出处
《中文信息学报》
CSCD
北大核心
2019年第6期124-131,共8页
文摘
为提高互联网中在线评论文本的情感倾向分类准确率,方便消费者和商家准确高效地获取信息,该文提出一种将语义规则方法与深度学习方法相结合的在线评论文本情感分类模型,对基于情感词典的语义规则信息进行扩展,嵌入到常用特征模板中组合成更有效的混合特征模板;采用Fisher判别准则方法对混合特征模板进行降维以消除特征间的信息冗余;深度学习模型采用基于LSTM改进的RNN模型,将网络爬取的数据输入到模型进行训练和测试。结果表明,语义规则抽取出的特征包含更多、更准确的情感信息,使得混合特征模板可以更加全面地考虑文本的情感特征粒度;Fisher准则可有效识别出高判别性的低维文本特征,进一步提高改进RNN模型对评论文本的分类性能。
关键词
在线评论
情感
分类
递归神经网络
情感语义规则
Keywords
online review
sentiment classification
recurrent neural network
emotional semantic rules
分类号
G206.3 [文化科学—传播学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于语义规则与RNN模型的在线评论情感分类研究
邵良杉
周玉
《中文信息学报》
CSCD
北大核心
2019
19
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部