期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于MHA-ResNet的语音情绪识别算法
1
作者 周传华 郝敏 +1 位作者 曾辉 王勇 《微电子学与计算机》 2024年第9期41-46,共6页
语音情绪识别的一个重要挑战是从语音信号中提取关键特征来提高识别准确率。在现有研究的基础上,提出了一种基于自注意力残差网络(Multi-Head-Attention Residual Network,MHA-ResNet)的语音情绪识别模型,提高了语音情绪识别准确率。首... 语音情绪识别的一个重要挑战是从语音信号中提取关键特征来提高识别准确率。在现有研究的基础上,提出了一种基于自注意力残差网络(Multi-Head-Attention Residual Network,MHA-ResNet)的语音情绪识别模型,提高了语音情绪识别准确率。首先,将原始语音信号数据进行预处理;其次,将提取到的情绪特征集,利用多头注意力机制具备的并行化处理且自适应关注的特性,初步获取不同状态下鉴别性的语音情绪信息;最后,残差网络进一步获取深层情绪特征,完成不同情绪的识别。为验证模型有效性,在CASIA和EmoDB数据集上进行实验,其结果显示识别准确率分别为93.59%和97.57%。 展开更多
关键词 语音情绪识别 多头注意力机制 残差网络 情绪特征集
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部