期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
从小说译著的情绪类成语英译看成语英译方法
1
作者 古珊珊 《海外英语》 2021年第2期7-9,24,共4页
中国语言系统中表达情绪的成语种类丰富,为翻译域外文学作品的情绪言辞提供了多样的炼词选择。但反过来,囿于中英语言差异,如何准确外译中文的情绪类成语却常常不容易。该文从纳撒尼尔·霍桑的名篇《七个尖角阁的房子》(林晓程译)... 中国语言系统中表达情绪的成语种类丰富,为翻译域外文学作品的情绪言辞提供了多样的炼词选择。但反过来,囿于中英语言差异,如何准确外译中文的情绪类成语却常常不容易。该文从纳撒尼尔·霍桑的名篇《七个尖角阁的房子》(林晓程译)和达夫妮·杜·穆里埃的长篇小说《蝴蝶梦》(林智玲、程德译)译文中挑选出21个情绪类成语的例子,对比分析外研社2016年出版的《新世纪汉英大词典(第二版)》中的成语翻译,以归纳和丰富情绪类成语的翻译方法,为中文文学作品中的情绪类成语外译提供参考。 展开更多
关键词 成语英译 七个尖角阁的房子 蝴蝶梦 新世纪汉英大词典 情绪类成语
下载PDF
Construction of unsupervised sentiment classifier on idioms resources 被引量:2
2
作者 谢松县 王挺 《Journal of Central South University》 SCIE EI CAS 2014年第4期1376-1384,共9页
Sentiment analysis is the computational study of how opinions, attitudes, emotions, and perspectives are expressed in language, and has been the important task of natural language processing. Sentiment analysis is hig... Sentiment analysis is the computational study of how opinions, attitudes, emotions, and perspectives are expressed in language, and has been the important task of natural language processing. Sentiment analysis is highly valuable for both research and practical applications. The focuses were put on the difficulties in the construction of sentiment classifiers which normally need tremendous labeled domain training data, and a novel unsupervised framework was proposed to make use of the Chinese idiom resources to develop a general sentiment classifier. Furthermore, the domain adaption of general sentiment classifier was improved by taking the general classifier as the base of a self-training procedure to get a domain self-training sentiment classifier. To validate the effect of the unsupervised framework, several experiments were carried out on publicly available Chinese online reviews dataset. The experiments show that the proposed framework is effective and achieves encouraging results. Specifically, the general classifier outperforms two baselines(a Na?ve 50% baseline and a cross-domain classifier), and the bootstrapping self-training classifier approximates the upper bound domain-specific classifier with the lowest accuracy of 81.5%, but the performance is more stable and the framework needs no labeled training dataset. 展开更多
关键词 sentiment analysis sentiment classification bootstrapping idioms general classifier domain-specific classifier
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部