Detailed parametric study of three-dimensional gas-particle multiphase flow characteristics in U-beam tube bundle inertial separators was conducted by numerical simulation. The carrier phase was treated in the Euleria...Detailed parametric study of three-dimensional gas-particle multiphase flow characteristics in U-beam tube bundle inertial separators was conducted by numerical simulation. The carrier phase was treated in the Eulerian frame, the particles were tracked in the Lagrangian frame, and particle-wall collision was considered. Simulation carried out at different inflow rate and mass loading ratios revealed the pressure losses in the separators, velocity field of the gas phase, and the trajectories of particles. The study results revealed the multiphase flow-dynamic features of the separators, and the relationship between separator pressure losses and different inlet velocity. The numerical simulation can provide basis both for optimal design of impacting-inertial separator used in circulating fluidized bed boiler; and for study of gas-particle multiphase circumfluence flow.展开更多
This paper is concerned with the generation of waves due to initial disturbances at the upper surface of a two-layer fluid, as the upper layer is covered by an inertial surface and the lower layer extends infinitely d...This paper is concerned with the generation of waves due to initial disturbances at the upper surface of a two-layer fluid, as the upper layer is covered by an inertial surface and the lower layer extends infinitely downwards. The inertial surface is composed of thin but uniform distribution of non-interacting material. In the mathematical analysis, the Fourier and Laplace transform techniques have been utilized to obtain the depressions of the inertial surface and the interface in the form of infinite integrals. For initial disturbances concentrated at a point, the inertial surface depression and the interface depression are evaluated asymptotically for large time and distance by using the method of stationary phase. They are also depicted graphically for two types of initial disturbances and appropriate conclusions are made.展开更多
The effects of atomic-level rnixing are systemically investigated in a multifluid interpenetration mix model ,and results are compared with the single-fluid model's simulations and experimental data. It is shown that...The effects of atomic-level rnixing are systemically investigated in a multifluid interpenetration mix model ,and results are compared with the single-fluid model's simulations and experimental data. It is shown that increasing the model free parameter α, shock Mach number, and the initial density discontinuity makes the mix length and fraction of mixing particle increase, resulting in the lower shock temperatures compared with the results of single-fluid model without mixing. Recent high-compressibility direct-drive spherical implosions on OMEGA are simulated by the interpenetration mix modal. The calculations with atomic mixing between fuel and shell match quite well with the observations. Without considering any mixing, the calculated neutron yields and ion temperatures are overpredicted; while inclusion of the interpenetration mix model with the adjustable parameter α could fit the simulated neutron yields and ion temperatures well with experimental data.展开更多
micro-electro-mechanical system (MEMS) device has the advantages of both electronic system and mechanical system. With the development of MEMS devices for satellite, it is possible to establish much lighter and smal...micro-electro-mechanical system (MEMS) device has the advantages of both electronic system and mechanical system. With the development of MEMS devices for satellite, it is possible to establish much lighter and smaller nanosatellites with higher performance and longer lifecyele. The power consumption of MEMS devices is usually much lower than that of traditional devices, which will greatly reduce the consumption of power. For its small size and simple architecture, MEMS devices can be easily integrated together and achieve redundancy. Launched on April 18, 2004, NS - 1 is a nanosatellite for science exploration and MEMS devices test. A mass of science data and images were acquired during its running. NS - 1 weights less than 25 kg. It consists of several MEMS devices, including one miniature inertial measurement unit(MIMU) , three micro complementary metal oxide semiconductor (CMOS)cameras, one sun sensor, three momentum wheels, and one micro magnetic sensor. By applying micro components based on MEMS technology, NS - 1 has made success in the experiments of integrative design, manufacture, and MEMS devices integration. In this paper, some MEMS devices for nanosatellite and picosatellite are introduced, which have been tested on NS -1 nanosatellite or on the ground.展开更多
In the context of this paper, a small scale, medium precision, stabilized pan/tilt platform is developed as a prototype, which is used to compare various stabilization algorithms experimentally. The overall performanc...In the context of this paper, a small scale, medium precision, stabilized pan/tilt platform is developed as a prototype, which is used to compare various stabilization algorithms experimentally. The overall performance of the system depends on rigid body dynamics, structural dynamics, servo control loops, stabilization control algorithm, sensor fusion algorithm and sensory feedback such as from the IMU (inertial measurement unit). In the case that the response bandwidth of the overall system is high enough, the same hardware can also achieve active vibration isolation. All of these design aspects are investigated in the paper via numerical models and with their experimental verification.展开更多
Earthquake-triggered landslides usually cause great disasters,and yet their dynamic mechanisms remain poorly understood.This paper will derive a general conceptual landslide model from the geometric and kinematic feat...Earthquake-triggered landslides usually cause great disasters,and yet their dynamic mechanisms remain poorly understood.This paper will derive a general conceptual landslide model from the geometric and kinematic features of the most landslide masses triggered by the 2008 Wenchuan earthquake.Kinematic characteristics and dynamic processes are simulated here by means of finite element method(FEM)based on the dynamic process of the discontinuous deformable body.The calculated results presented the whole course of landslide motion,and displayed some typical kinematic characteristics such as initiation,sliding,ejection,collision,flying in the air,and climbing of landslides.The simulation result also shows that,under combined seismic inertial forces and gravity,landslides will start to slip once it overcomes the friction between the sliding mass and slip-bed,then it will move from slow to fast along the slippery bed until it ejects from the slip-bed.Moreover,the high frequencies and serious damages by landslides in the Wenchuan earthquake are caused by the strong ground motion on the mountain slopes in and around the epicenter that was dramatically amplified owing to both resonances produced by the seismic event and topographical amplification by seismic motion.In addition,the modeling results suggest that the direction,amplitude,frequency,and duration of strong ground motion have a great influence on the stability of landslide mass.Therefore,the study helps us better understand dynamic mechanism of landslides,seismic hazard assessment,and dynamic earthquake triggering.展开更多
The validity of single-fluid model in inertial confinement fusion simulations is studied by comparing the results of the multi- and single-fluid models. The multi-fluid model includes the effects of collision and inte...The validity of single-fluid model in inertial confinement fusion simulations is studied by comparing the results of the multi- and single-fluid models. The multi-fluid model includes the effects of collision and interpenetration between fluid species. By simulating the collision of fluid species, steady-state shock propagation into the thin DT gas and expansion of hohlraum Au wall heated by lasers, the results show that the validity of single-fluid model is strongly dependent on the ratio of the characteristic length of the simulated system to the particle mean free path. When the characteristic length L is one order larger than the mean free path A, the single-fluid model's results are found to be in good agreement with the multi-fluid model's simulations, and the modeling of single-fluid remains valid. If the value of L/A is lower than 10, the interpenetration between fluid species is significant, and the single-fluid simulations show some unphysical results; while the multi-fluid model can describe well the interpenetration and mix phenomena, and give more reasonable results.展开更多
The stopping and scattering of fast electrons in a dense plasma relevant to inertial confinement fusion (ICF) are investigated numerically with the latest improved cross section equations. Binary and collective effe...The stopping and scattering of fast electrons in a dense plasma relevant to inertial confinement fusion (ICF) are investigated numerically with the latest improved cross section equations. Binary and collective effects are considered to determine beam transport parameters such as range, penetration depth, spreading processes as straggling and blooming versus electron energy and plasma parameters. Blooming and straggling effects, which act as consequences of scattering with statistical assumption in collisions, lead to a non-uniform, extended region of energy deposition. Finally the mean angle of deflections is calculated for different plasma energies.展开更多
This work deals with the dissipative generalized Korteweg-de Vries (gKdV) equations of the formu t + u 2u x + u xxx-bu xx+ ru = f, t≥0, u(0,x) = u 0(x)∈V = H 2 2π,with periodic boundary conditions. It is proved tha...This work deals with the dissipative generalized Korteweg-de Vries (gKdV) equations of the formu t + u 2u x + u xxx-bu xx+ ru = f, t≥0, u(0,x) = u 0(x)∈V = H 2 2π,with periodic boundary conditions. It is proved that there exists an inertial manifold for the semiflow generated by this equation in space V. Since such a manifold is finite dimensional, positively invariant, and exponentially attracting of all the solution trajectories, the long-time dynamics of the dissipative gKdV equations are determined by a finite number of modes without the soliton phenomena.展开更多
A Lagrangian compatible radiation hydrodynamic algorithm and the nuclear dynamics computing module are developed and implemented in the LARED Integration code, which is a radiation hydrodynamic code based on the 2-D c...A Lagrangian compatible radiation hydrodynamic algorithm and the nuclear dynamics computing module are developed and implemented in the LARED Integration code, which is a radiation hydrodynamic code based on the 2-D cylindrical coordinates for the numerical simulation of the indirect-drive Inertial Confined Fusion. A number of 1-D and 2-D ignition implosion numerical simulations by using the improved LARED Integration code (ILARED) are presented which show that the 1-D numerical results are consistent with those computed by the 1-D radiation hydrodynamic code RDMG, while the simulation results of the 2-D low-mode radiative asymmetry and hydrodynamic instability growth,according to the physical analysis and anticipation, are satisfactory. The capsules driven by the sources from SGII experiments are also simulated by ILARED, and the fuel shapes agree well with the experimental results. The numerical simulations demonstrate that ILARED can be used in the simulation of the 1-D and 2-D ignition capsule implosion using the multi-group diffusion model for radiation.展开更多
文摘Detailed parametric study of three-dimensional gas-particle multiphase flow characteristics in U-beam tube bundle inertial separators was conducted by numerical simulation. The carrier phase was treated in the Eulerian frame, the particles were tracked in the Lagrangian frame, and particle-wall collision was considered. Simulation carried out at different inflow rate and mass loading ratios revealed the pressure losses in the separators, velocity field of the gas phase, and the trajectories of particles. The study results revealed the multiphase flow-dynamic features of the separators, and the relationship between separator pressure losses and different inlet velocity. The numerical simulation can provide basis both for optimal design of impacting-inertial separator used in circulating fluidized bed boiler; and for study of gas-particle multiphase circumfluence flow.
基金Supported by the DST Research Project No.SR/SY/MS:521/08and CSIR,New Delhi
文摘This paper is concerned with the generation of waves due to initial disturbances at the upper surface of a two-layer fluid, as the upper layer is covered by an inertial surface and the lower layer extends infinitely downwards. The inertial surface is composed of thin but uniform distribution of non-interacting material. In the mathematical analysis, the Fourier and Laplace transform techniques have been utilized to obtain the depressions of the inertial surface and the interface in the form of infinite integrals. For initial disturbances concentrated at a point, the inertial surface depression and the interface depression are evaluated asymptotically for large time and distance by using the method of stationary phase. They are also depicted graphically for two types of initial disturbances and appropriate conclusions are made.
基金Supported by the National Basic Research Program of China under Grant No.2007CB815100the National Natural Science Foundation of China under Grant Nos.10775020 and 10935003
文摘The effects of atomic-level rnixing are systemically investigated in a multifluid interpenetration mix model ,and results are compared with the single-fluid model's simulations and experimental data. It is shown that increasing the model free parameter α, shock Mach number, and the initial density discontinuity makes the mix length and fraction of mixing particle increase, resulting in the lower shock temperatures compared with the results of single-fluid model without mixing. Recent high-compressibility direct-drive spherical implosions on OMEGA are simulated by the interpenetration mix modal. The calculations with atomic mixing between fuel and shell match quite well with the observations. Without considering any mixing, the calculated neutron yields and ion temperatures are overpredicted; while inclusion of the interpenetration mix model with the adjustable parameter α could fit the simulated neutron yields and ion temperatures well with experimental data.
文摘micro-electro-mechanical system (MEMS) device has the advantages of both electronic system and mechanical system. With the development of MEMS devices for satellite, it is possible to establish much lighter and smaller nanosatellites with higher performance and longer lifecyele. The power consumption of MEMS devices is usually much lower than that of traditional devices, which will greatly reduce the consumption of power. For its small size and simple architecture, MEMS devices can be easily integrated together and achieve redundancy. Launched on April 18, 2004, NS - 1 is a nanosatellite for science exploration and MEMS devices test. A mass of science data and images were acquired during its running. NS - 1 weights less than 25 kg. It consists of several MEMS devices, including one miniature inertial measurement unit(MIMU) , three micro complementary metal oxide semiconductor (CMOS)cameras, one sun sensor, three momentum wheels, and one micro magnetic sensor. By applying micro components based on MEMS technology, NS - 1 has made success in the experiments of integrative design, manufacture, and MEMS devices integration. In this paper, some MEMS devices for nanosatellite and picosatellite are introduced, which have been tested on NS -1 nanosatellite or on the ground.
文摘In the context of this paper, a small scale, medium precision, stabilized pan/tilt platform is developed as a prototype, which is used to compare various stabilization algorithms experimentally. The overall performance of the system depends on rigid body dynamics, structural dynamics, servo control loops, stabilization control algorithm, sensor fusion algorithm and sensory feedback such as from the IMU (inertial measurement unit). In the case that the response bandwidth of the overall system is high enough, the same hardware can also achieve active vibration isolation. All of these design aspects are investigated in the paper via numerical models and with their experimental verification.
基金supported by National Natural Science Foundation of China(Grant No.40974020)Special Project in Ministry of Land and Resources(Grant No.SinoProbe-07)Special Project for Basic Research on the State Level(Grant No.ZDJ2009-1)
文摘Earthquake-triggered landslides usually cause great disasters,and yet their dynamic mechanisms remain poorly understood.This paper will derive a general conceptual landslide model from the geometric and kinematic features of the most landslide masses triggered by the 2008 Wenchuan earthquake.Kinematic characteristics and dynamic processes are simulated here by means of finite element method(FEM)based on the dynamic process of the discontinuous deformable body.The calculated results presented the whole course of landslide motion,and displayed some typical kinematic characteristics such as initiation,sliding,ejection,collision,flying in the air,and climbing of landslides.The simulation result also shows that,under combined seismic inertial forces and gravity,landslides will start to slip once it overcomes the friction between the sliding mass and slip-bed,then it will move from slow to fast along the slippery bed until it ejects from the slip-bed.Moreover,the high frequencies and serious damages by landslides in the Wenchuan earthquake are caused by the strong ground motion on the mountain slopes in and around the epicenter that was dramatically amplified owing to both resonances produced by the seismic event and topographical amplification by seismic motion.In addition,the modeling results suggest that the direction,amplitude,frequency,and duration of strong ground motion have a great influence on the stability of landslide mass.Therefore,the study helps us better understand dynamic mechanism of landslides,seismic hazard assessment,and dynamic earthquake triggering.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11105013,10935003,11275031,11205017,and11075023,the National Basic Research Program of China under Grant No.2013CB834110,the National High-Tech R&D Program(863 Program)under Grant No.2012AA01A303
文摘The validity of single-fluid model in inertial confinement fusion simulations is studied by comparing the results of the multi- and single-fluid models. The multi-fluid model includes the effects of collision and interpenetration between fluid species. By simulating the collision of fluid species, steady-state shock propagation into the thin DT gas and expansion of hohlraum Au wall heated by lasers, the results show that the validity of single-fluid model is strongly dependent on the ratio of the characteristic length of the simulated system to the particle mean free path. When the characteristic length L is one order larger than the mean free path A, the single-fluid model's results are found to be in good agreement with the multi-fluid model's simulations, and the modeling of single-fluid remains valid. If the value of L/A is lower than 10, the interpenetration between fluid species is significant, and the single-fluid simulations show some unphysical results; while the multi-fluid model can describe well the interpenetration and mix phenomena, and give more reasonable results.
文摘The stopping and scattering of fast electrons in a dense plasma relevant to inertial confinement fusion (ICF) are investigated numerically with the latest improved cross section equations. Binary and collective effects are considered to determine beam transport parameters such as range, penetration depth, spreading processes as straggling and blooming versus electron energy and plasma parameters. Blooming and straggling effects, which act as consequences of scattering with statistical assumption in collisions, lead to a non-uniform, extended region of energy deposition. Finally the mean angle of deflections is calculated for different plasma energies.
文摘This work deals with the dissipative generalized Korteweg-de Vries (gKdV) equations of the formu t + u 2u x + u xxx-bu xx+ ru = f, t≥0, u(0,x) = u 0(x)∈V = H 2 2π,with periodic boundary conditions. It is proved that there exists an inertial manifold for the semiflow generated by this equation in space V. Since such a manifold is finite dimensional, positively invariant, and exponentially attracting of all the solution trajectories, the long-time dynamics of the dissipative gKdV equations are determined by a finite number of modes without the soliton phenomena.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10901021,91130002,11126134and11105013the China Academy of Engineering Physics Project under Grant No.2012A0202010+1 种基金the National High Technology Research and Development Program of China under Grant No.2012AA01A303the National Hi-Tech Inertial Confinement Fusion Committee of China
文摘A Lagrangian compatible radiation hydrodynamic algorithm and the nuclear dynamics computing module are developed and implemented in the LARED Integration code, which is a radiation hydrodynamic code based on the 2-D cylindrical coordinates for the numerical simulation of the indirect-drive Inertial Confined Fusion. A number of 1-D and 2-D ignition implosion numerical simulations by using the improved LARED Integration code (ILARED) are presented which show that the 1-D numerical results are consistent with those computed by the 1-D radiation hydrodynamic code RDMG, while the simulation results of the 2-D low-mode radiative asymmetry and hydrodynamic instability growth,according to the physical analysis and anticipation, are satisfactory. The capsules driven by the sources from SGII experiments are also simulated by ILARED, and the fuel shapes agree well with the experimental results. The numerical simulations demonstrate that ILARED can be used in the simulation of the 1-D and 2-D ignition capsule implosion using the multi-group diffusion model for radiation.