A new compensation method for angular rate estimation of non-gyro inertial measurement unit (NGIMU) is proposed in terms of the existence of aecelerometer mounting error, which seriously affects the precision of nav...A new compensation method for angular rate estimation of non-gyro inertial measurement unit (NGIMU) is proposed in terms of the existence of aecelerometer mounting error, which seriously affects the precision of navigation parameter estimation. Using the accelerometer output error function, the algorithm compensates the posture parameters in the traditional algorithm of angular rate estimation to reduce the accelerometer mounting error. According to the traditional aceelerometer configurations, a novel nine-accelerometer confi-guration of NGIMU is presented with its mathematic model constructed. The semi-hardware simulations of the proposed algorithm are investigated based on the presented NGIMU configuration, and the results show the effectivity of the new algorithm.展开更多
Calibration of magnetometer is an essential part to obtain high measurement precision.However,the existing calibration methods are basically the calibration of all attitudes,which means tough work when the magnetomete...Calibration of magnetometer is an essential part to obtain high measurement precision.However,the existing calibration methods are basically the calibration of all attitudes,which means tough work when the magnetometer is applied in strapdown inertial navigation system(SINS).So a quick,easy and effective calibration algorithm is developed based on the ellipsoid constraint to calibrate magnetometers.In this paper,the measuring principle and error characteristic of the magnetometer are analysed to study its magnetic interference.During the process,a magnetometer calibration model is set up to convert the calibration to ellipsoid fitting based on the characteristic of hard magnetic interference and soft magnetic interference.Then the algorithm is tested by mimic experiment.The result shows that measurement precision is improved after the calibration,and then the magnetometer is installed in a control cabin of an underwater robot which is designed and developed by us,and actual magnetometer calibration experiments are conducted to further verify the validity of the algorithm.展开更多
An effective and flexible rotation and compensation scheme is designed to improve the accuracy of rotating inertial navigation system (RINS). The accuracy of single-axial R1NS is limited by the errors on the rotatin...An effective and flexible rotation and compensation scheme is designed to improve the accuracy of rotating inertial navigation system (RINS). The accuracy of single-axial R1NS is limited by the errors on the rotating axis. A novel inertial measurement unit (IMU) scheme with error compensation for the rotating axis of fiber optic gyros (FOG) RINS is presented. In the scheme, two couples of inertial sensors with similar error characteristics are mounted oppositely on the rotating axes to compensate the sensors error. Without any change for the rotation cycle, this scheme improves the system's precision and reliability, and also offers the redundancy for the system. The results of 36 h navigation simulation prove that the accuracy of the system is improved notably compared with normal strapdown INS, besides the heading accuracy is increased by 3 times compared with single-axial RINS, and the position accuracy is improved by 1 order of magnitude.展开更多
The π-tangle is used to study the behavior of entanglement of a nonmaximal tripartite state of both Dirac and scMar fields in accelerated frame. For Dirac fields, the degree of degradation with acceleration of both o...The π-tangle is used to study the behavior of entanglement of a nonmaximal tripartite state of both Dirac and scMar fields in accelerated frame. For Dirac fields, the degree of degradation with acceleration of both one-tangle of accelerated observer and π-tangle, for the same initial entanglement, is different by just interchanging the values of probability amplitudes. A fraction of both one-tangles and the π-tangle always survives for any choice of acceleration and the degree of initial entanglement. For scalar field, the one-tangle of accelerated observer depends on the choice of values of probability amplitudes and it vanishes in the range of infinite acceleration, whereas for 1r-tangle this is not always true. The dependence of π-tangle on probability amplitudes varies with acceleration. In the lower range of acceleration, its behavior changes by switching between the values of probability amplitudes and for larger values of acceleration this dependence on probability amplitudes vanishes. Interestingly, unlike bipartite entanglement, the degradation of π-tangle against acceleration in the case of sca/ar fields is slower than for Dirac fields.展开更多
A large-scale spatial angle measurement method is proposed based on inertial reference. Common measurement reter- ence is established in inertial space, and the spatial vector coordinates of each measured axis in iner...A large-scale spatial angle measurement method is proposed based on inertial reference. Common measurement reter- ence is established in inertial space, and the spatial vector coordinates of each measured axis in inertial space are measured by using autocollimation tracking and inertial measurement technology. According to the spatial coordinates of each test vector axis, the measurement of large-scale spatial angle is easily realized. The pointing error of tracking device based on the two mirrors in the measurement system is studied, and the influence of different installation errors to the pointing error is analyzed. This research can lay a foundation for error allocation, calibration and compensation for the measurement system.展开更多
基金Sponsored by the National Natural Science Foundation of China (Grant No.60901042)the Natural Science Foundation of Heilongjiang Province(Grant No.F2007-08)
文摘A new compensation method for angular rate estimation of non-gyro inertial measurement unit (NGIMU) is proposed in terms of the existence of aecelerometer mounting error, which seriously affects the precision of navigation parameter estimation. Using the accelerometer output error function, the algorithm compensates the posture parameters in the traditional algorithm of angular rate estimation to reduce the accelerometer mounting error. According to the traditional aceelerometer configurations, a novel nine-accelerometer confi-guration of NGIMU is presented with its mathematic model constructed. The semi-hardware simulations of the proposed algorithm are investigated based on the presented NGIMU configuration, and the results show the effectivity of the new algorithm.
基金Supported by the National High Technology Research and Development Programme of China(No.2011AA04201)
文摘Calibration of magnetometer is an essential part to obtain high measurement precision.However,the existing calibration methods are basically the calibration of all attitudes,which means tough work when the magnetometer is applied in strapdown inertial navigation system(SINS).So a quick,easy and effective calibration algorithm is developed based on the ellipsoid constraint to calibrate magnetometers.In this paper,the measuring principle and error characteristic of the magnetometer are analysed to study its magnetic interference.During the process,a magnetometer calibration model is set up to convert the calibration to ellipsoid fitting based on the characteristic of hard magnetic interference and soft magnetic interference.Then the algorithm is tested by mimic experiment.The result shows that measurement precision is improved after the calibration,and then the magnetometer is installed in a control cabin of an underwater robot which is designed and developed by us,and actual magnetometer calibration experiments are conducted to further verify the validity of the algorithm.
基金supported by the National Natural Science Foundation of China (No.40904018)the Key Laboratory Foundation of the Ministry of Education of China (No.201001)the Doctoral Innovation Foundation of Naval University of Engineering (No.BSJJ2011008)
文摘An effective and flexible rotation and compensation scheme is designed to improve the accuracy of rotating inertial navigation system (RINS). The accuracy of single-axial R1NS is limited by the errors on the rotating axis. A novel inertial measurement unit (IMU) scheme with error compensation for the rotating axis of fiber optic gyros (FOG) RINS is presented. In the scheme, two couples of inertial sensors with similar error characteristics are mounted oppositely on the rotating axes to compensate the sensors error. Without any change for the rotation cycle, this scheme improves the system's precision and reliability, and also offers the redundancy for the system. The results of 36 h navigation simulation prove that the accuracy of the system is improved notably compared with normal strapdown INS, besides the heading accuracy is increased by 3 times compared with single-axial RINS, and the position accuracy is improved by 1 order of magnitude.
文摘The π-tangle is used to study the behavior of entanglement of a nonmaximal tripartite state of both Dirac and scMar fields in accelerated frame. For Dirac fields, the degree of degradation with acceleration of both one-tangle of accelerated observer and π-tangle, for the same initial entanglement, is different by just interchanging the values of probability amplitudes. A fraction of both one-tangles and the π-tangle always survives for any choice of acceleration and the degree of initial entanglement. For scalar field, the one-tangle of accelerated observer depends on the choice of values of probability amplitudes and it vanishes in the range of infinite acceleration, whereas for 1r-tangle this is not always true. The dependence of π-tangle on probability amplitudes varies with acceleration. In the lower range of acceleration, its behavior changes by switching between the values of probability amplitudes and for larger values of acceleration this dependence on probability amplitudes vanishes. Interestingly, unlike bipartite entanglement, the degradation of π-tangle against acceleration in the case of sca/ar fields is slower than for Dirac fields.
基金supported by the National Natural Science Foundation of China(No.51305455)
文摘A large-scale spatial angle measurement method is proposed based on inertial reference. Common measurement reter- ence is established in inertial space, and the spatial vector coordinates of each measured axis in inertial space are measured by using autocollimation tracking and inertial measurement technology. According to the spatial coordinates of each test vector axis, the measurement of large-scale spatial angle is easily realized. The pointing error of tracking device based on the two mirrors in the measurement system is studied, and the influence of different installation errors to the pointing error is analyzed. This research can lay a foundation for error allocation, calibration and compensation for the measurement system.