Based on error analysis, the influence of error sources on strapdown inertial navigation systems is discussed. And the maximum permissible component tolerances are established. In order to achieve the desired accuracy...Based on error analysis, the influence of error sources on strapdown inertial navigation systems is discussed. And the maximum permissible component tolerances are established. In order to achieve the desired accuracy (defined by circular error probability), the types of appropriate sensors are chosen. The inertial measurement unit (IMU) is composed of those sensors. It is necessary to calibrate the sensors to obtain their error model coefficients of IMU. After calibration tests, the accuracy is calculated by uniform design method and it is proved that the accuracy of IMU is satisfied for the desired goal.展开更多
In this paper, we present a fast and fraction free procedure for computing the inertia of Bezout matrix and we can determine the numbers of different real roots and different pairs of conjugate complex roots of a pol...In this paper, we present a fast and fraction free procedure for computing the inertia of Bezout matrix and we can determine the numbers of different real roots and different pairs of conjugate complex roots of a polynomial equation with integer coefficients quickly based on this result.展开更多
Based on the study of passive articulated rover,a complete suspension kinematics model from wheel to inertial reference frame is presented,which uses D-H method of manipulator and presentation with Euler angle of pitc...Based on the study of passive articulated rover,a complete suspension kinematics model from wheel to inertial reference frame is presented,which uses D-H method of manipulator and presentation with Euler angle of pitch,roll and yaw.An improved contact model is adopted aimed at the loose and rough lunar terrain.Using this kinematics model and numerical continuous and discrete Newton's method with iterative factor,the numerical method for estimation of kinematical parameters of articulated rovers on loose and rough terrain is constructed.To demonstrate this numerical method,an example of two torsion bar rocker-bogie lunar rover with eight wheels is presented.Simulation results show that the numerical method for estimation of kinematical parameters of articulated rovers based on improved contact model can improve the precision of kinematical estimation on loose and rough terrain and decrease errors caused by contact models established based on general hypothesis.展开更多
Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobil...Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobile target positioning. Taking traditional Kalman filter(KF) as the framework, the system equation of KF was established by the INS and the observation equation of position errors was built by the WSN. Meanwhile, the observation equation of velocity errors was established by the velocity difference between the INS and WSN, then the covariance matrix of Kalman filter measurement noise was adjusted with fuzzy inference system(FIS), and the fuzzy adaptive Kalman filter(FAKF) based on the INS/WSN was proposed. The simulation results show that the FAKF method has better accuracy and robustness than KF and EKF methods and shows good adaptive capacity with time-varying system noise. Finally, experimental results further prove that FAKF has the fast convergence error, in comparison with KF and EKF methods.展开更多
Open source intelligence is one of the most important public data sources for strategic information analysis. One of the primary and core issues of strategic information research is information perception,so this pape...Open source intelligence is one of the most important public data sources for strategic information analysis. One of the primary and core issues of strategic information research is information perception,so this paper mainly expounds the perception method for strategic information perception in the open source intelligence environment as well as the framework and basic process of information perception. This paper argues that in order to match the information perception result with the information depiction result,it conducts practical exploration for the results of information acquisition,perception,depiction and analysis. This paper introduces and develops a monitoring platform for information perception. The results show that the method proposed in this paper is feasible.展开更多
High-speed and precision positioning are fundamental requirements for high-acceleration low-load mechanisms in integrated circuit (IC) packaging equipment. In this paper, we derive the transient nonlinear dynamicres...High-speed and precision positioning are fundamental requirements for high-acceleration low-load mechanisms in integrated circuit (IC) packaging equipment. In this paper, we derive the transient nonlinear dynamicresponse equations of high-acceleration mechanisms, which reveal that stiffness, frequency, damping, and driving frequency are the primary factors. Therefore, we propose a new structural optimization and velocity-planning method for the precision positioning of a high-acceleration mechanism based on optimal spatial and temporal distribution of inertial energy. For structural optimization, we first reviewed the commonly flexible multibody dynamic optimization using equivalent static loads method (ESLM), and then we selected the modified ESLM for optimal spatial distribution of inertial energy; hence, not only the stiffness but also the inertia and frequency of the real modal shapes are considered. For velocity planning, we developed a new velocity-planning method based on nonlinear dynamic-response optimization with varying motion conditions. Our method was verified on a high-acceleration die bonder. The amplitude of residual vibration could be decreased by more than 20% via structural optimization and the positioning time could be reduced by more than 40% via asymmetric variable velocity planning. This method provides an effective theoretical support for the precision positioning of high-acceleration low-load mechanisms.展开更多
The error of the conventional velocity numerical integration algorithm was evaluated through the Taylor series expansion. It is revealed that neglecting the second- and higher-order terms of attitude increments will l...The error of the conventional velocity numerical integration algorithm was evaluated through the Taylor series expansion. It is revealed that neglecting the second- and higher-order terms of attitude increments will lead to the velocity numerical integration error, which is proportional to the triple cross product of the angular rate and specific force. A selection criterion for the velocity numerical integration algorithm was established for strapdown inertial navigation system (SINS) in spinning missiles. The spin angular rate with large amplitude will cause the accuracy of the conventional velocity numerical integration algorithm in SINS to decrease dramatically when the ballistic missile is spinning fast. Therefore, with the second- and higher-order terms of attitude increments considered, based on the rotation vector and the velocity translation vector, the velocity numerical integration algorithm was optimized for SINS in spinning ballistic missiles. The superiority of the optimized algorithm over the conventional one was analytically derived and validated by the simulation. The optimized algorithm turns out to be a better choice for SINS in spinning ballistic missiles and other high-precision navigation systems and high-maneuver applications.展开更多
文摘Based on error analysis, the influence of error sources on strapdown inertial navigation systems is discussed. And the maximum permissible component tolerances are established. In order to achieve the desired accuracy (defined by circular error probability), the types of appropriate sensors are chosen. The inertial measurement unit (IMU) is composed of those sensors. It is necessary to calibrate the sensors to obtain their error model coefficients of IMU. After calibration tests, the accuracy is calculated by uniform design method and it is proved that the accuracy of IMU is satisfied for the desired goal.
文摘In this paper, we present a fast and fraction free procedure for computing the inertia of Bezout matrix and we can determine the numbers of different real roots and different pairs of conjugate complex roots of a polynomial equation with integer coefficients quickly based on this result.
基金Sponsored by the National High Technology Research and Development Program of China(863 Program)(Grant No.2006AA04Z231)the National Science Foundation of Heilongjiang Province(Grant No.ZJG0709)"The 111 Project"(Grant No.B07018)
文摘Based on the study of passive articulated rover,a complete suspension kinematics model from wheel to inertial reference frame is presented,which uses D-H method of manipulator and presentation with Euler angle of pitch,roll and yaw.An improved contact model is adopted aimed at the loose and rough lunar terrain.Using this kinematics model and numerical continuous and discrete Newton's method with iterative factor,the numerical method for estimation of kinematical parameters of articulated rovers on loose and rough terrain is constructed.To demonstrate this numerical method,an example of two torsion bar rocker-bogie lunar rover with eight wheels is presented.Simulation results show that the numerical method for estimation of kinematical parameters of articulated rovers based on improved contact model can improve the precision of kinematical estimation on loose and rough terrain and decrease errors caused by contact models established based on general hypothesis.
基金Project(2013AA06A411)supported by the National High Technology Research and Development Program of ChinaProject(CXZZ14_1374)supported by the Graduate Education Innovation Program of Jiangsu Province,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobile target positioning. Taking traditional Kalman filter(KF) as the framework, the system equation of KF was established by the INS and the observation equation of position errors was built by the WSN. Meanwhile, the observation equation of velocity errors was established by the velocity difference between the INS and WSN, then the covariance matrix of Kalman filter measurement noise was adjusted with fuzzy inference system(FIS), and the fuzzy adaptive Kalman filter(FAKF) based on the INS/WSN was proposed. The simulation results show that the FAKF method has better accuracy and robustness than KF and EKF methods and shows good adaptive capacity with time-varying system noise. Finally, experimental results further prove that FAKF has the fast convergence error, in comparison with KF and EKF methods.
基金Supported by the National Social Science Fund Project(No.18BTQ054)
文摘Open source intelligence is one of the most important public data sources for strategic information analysis. One of the primary and core issues of strategic information research is information perception,so this paper mainly expounds the perception method for strategic information perception in the open source intelligence environment as well as the framework and basic process of information perception. This paper argues that in order to match the information perception result with the information depiction result,it conducts practical exploration for the results of information acquisition,perception,depiction and analysis. This paper introduces and develops a monitoring platform for information perception. The results show that the method proposed in this paper is feasible.
基金supported by the National Key Basic Research Program of China (2011CB013104)National Natural Science Foundation of China (U1134004)+2 种基金Guangdong Provincial Natural Science Foundation (2015A030312008)Science and Technology Program of Guangzhou (201510010281)Guangdong Provincial Science and Technology Plan (2013B010402014)
文摘High-speed and precision positioning are fundamental requirements for high-acceleration low-load mechanisms in integrated circuit (IC) packaging equipment. In this paper, we derive the transient nonlinear dynamicresponse equations of high-acceleration mechanisms, which reveal that stiffness, frequency, damping, and driving frequency are the primary factors. Therefore, we propose a new structural optimization and velocity-planning method for the precision positioning of a high-acceleration mechanism based on optimal spatial and temporal distribution of inertial energy. For structural optimization, we first reviewed the commonly flexible multibody dynamic optimization using equivalent static loads method (ESLM), and then we selected the modified ESLM for optimal spatial distribution of inertial energy; hence, not only the stiffness but also the inertia and frequency of the real modal shapes are considered. For velocity planning, we developed a new velocity-planning method based on nonlinear dynamic-response optimization with varying motion conditions. Our method was verified on a high-acceleration die bonder. The amplitude of residual vibration could be decreased by more than 20% via structural optimization and the positioning time could be reduced by more than 40% via asymmetric variable velocity planning. This method provides an effective theoretical support for the precision positioning of high-acceleration low-load mechanisms.
基金Project supported in part by Program for New Century Excellent Talents in University (NCET) of China
文摘The error of the conventional velocity numerical integration algorithm was evaluated through the Taylor series expansion. It is revealed that neglecting the second- and higher-order terms of attitude increments will lead to the velocity numerical integration error, which is proportional to the triple cross product of the angular rate and specific force. A selection criterion for the velocity numerical integration algorithm was established for strapdown inertial navigation system (SINS) in spinning missiles. The spin angular rate with large amplitude will cause the accuracy of the conventional velocity numerical integration algorithm in SINS to decrease dramatically when the ballistic missile is spinning fast. Therefore, with the second- and higher-order terms of attitude increments considered, based on the rotation vector and the velocity translation vector, the velocity numerical integration algorithm was optimized for SINS in spinning ballistic missiles. The superiority of the optimized algorithm over the conventional one was analytically derived and validated by the simulation. The optimized algorithm turns out to be a better choice for SINS in spinning ballistic missiles and other high-precision navigation systems and high-maneuver applications.