期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
论唐诗自注与情蕴的关系 被引量:8
1
作者 魏娜 《文艺理论研究》 CSSCI 北大核心 2013年第4期150-158,共9页
自注是唐诗史上一个重要而普遍的现象。作为诗歌表达的辅助手段,自注与诗歌的内在情蕴有着复杂的关系。唐诗自注发展的阶段性差异,也引起自注与诗情关系的动态变化:由初唐至大历时期的疏远,到中唐时期的交融,直至晚唐时期在维续中走向... 自注是唐诗史上一个重要而普遍的现象。作为诗歌表达的辅助手段,自注与诗歌的内在情蕴有着复杂的关系。唐诗自注发展的阶段性差异,也引起自注与诗情关系的动态变化:由初唐至大历时期的疏远,到中唐时期的交融,直至晚唐时期在维续中走向萎缩。这种动态轨迹的实质,在于自注围绕着诗歌情蕴而进行离心或向心的游移。自注与诗情关系的揭示,对我们重新审视诗歌自注乃至从更为广远的意义上理解唐代诗歌的发展演变,具有一定的启示意义。 展开更多
关键词 唐诗自 诗歌情蕴 背景 意义注
下载PDF
慧琳《一切经音义》中的转注兼会意字 被引量:1
2
作者 黄仁瑄 《语言研究》 CSSCI 北大核心 2005年第2期93-98,共6页
唐释慧琳《一切经音义》中有5条转注材料同时注明了会意的性质。转注字的特点是:(1)构件组合关系的历时性;(2)意义的继承性;(3)结构类型的形声化。标识会意是《说文》影响慧琳的结果,标识转注是慧琳自己的主张。
关键词 慧琳 一切经音义 会意
下载PDF
指向素养融通的填洼式有意义学习教学设计——以“大气的受热过程”为例
3
作者 王小强 《中学地理教学参考》 2024年第25期49-52,56,共5页
文章分析了核心素养的融通培养和有意义学习的内涵与关联,认为在素养为本的教育背景下,通过填注式有意义学习建构知识间的系统关联是实现素养融通目标的根基;构建了指向素养融通的填洼式有意义学习的基本教学模式(记忆-理解-应用与分析... 文章分析了核心素养的融通培养和有意义学习的内涵与关联,认为在素养为本的教育背景下,通过填注式有意义学习建构知识间的系统关联是实现素养融通目标的根基;构建了指向素养融通的填洼式有意义学习的基本教学模式(记忆-理解-应用与分析-评价与创造),并以“大气的受热过程”为例开展了教学设计实践。 展开更多
关键词 素养融通 式有意义学习 地理教学
原文传递
Semantic segmentation method of road scene based on Deeplabv3+ and attention mechanism 被引量:6
4
作者 BAI Yanqiong ZHENG Yufu TIAN Hong 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第4期412-422,共11页
In the study of automatic driving,understanding the road scene is a key to improve driving safety.The semantic segmentation method could divide the image into different areas associated with semantic categories in acc... In the study of automatic driving,understanding the road scene is a key to improve driving safety.The semantic segmentation method could divide the image into different areas associated with semantic categories in accordance with the pixel level,so as to help vehicles to perceive and obtain the surrounding road environment information,which would improve driving safety.Deeplabv3+is the current popular semantic segmentation model.There are phenomena that small targets are missed and similar objects are easily misjudged during its semantic segmentation tasks,which leads to rough segmentation boundary and reduces semantic accuracy.This study focuses on the issue,based on the Deeplabv3+network structure and combined with the attention mechanism,to increase the weight of the segmentation area,and then proposes an improved Deeplabv3+fusion attention mechanism for road scene semantic segmentation method.First,a group of parallel position attention module and channel attention module are introduced on the Deeplabv3+encoding end to capture more spatial context information and high-level semantic information.Then,an attention mechanism is introduced to restore the spatial detail information,and the data shall be normalized in order to accelerate the convergence speed of the model at the decoding end.The effects of model segmentation with different attention-introducing mechanisms are compared and tested on CamVid and Cityscapes datasets.The experimental results show that the mean Intersection over Unons of the improved model segmentation accuracies on the two datasets are boosted by 6.88%and 2.58%,respectively,which is better than using Deeplabv3+.This method does not significantly increase the amount of network calculation and complexity,and has a good balance of speed and accuracy. 展开更多
关键词 autonomous driving road scene semantic segmentation Deeplabv3+ attention mechanism
下载PDF
Multidimensional attention and multiscale upsampling for semantic segmentation
5
作者 LU Zhongda ZHANG Chunda +1 位作者 WANG Lijing XU Fengxia 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第1期68-78,共11页
Semantic segmentation is for pixel-level classification tasks,and contextual information has an important impact on the performance of segmentation.In order to capture richer contextual information,we adopt ResNet as ... Semantic segmentation is for pixel-level classification tasks,and contextual information has an important impact on the performance of segmentation.In order to capture richer contextual information,we adopt ResNet as the backbone network and designs an encoder-decoder architecture based on multidimensional attention(MDA)module and multiscale upsampling(MSU)module.The MDA module calculates the attention matrices of the three dimensions to capture the dependency of each position,and adaptively captures the image features.The MSU module adopts parallel branches to capture the multiscale features of the images,and multiscale feature aggregation can enhance contextual information.A series of experiments demonstrate the validity of the model on Cityscapes and Camvid datasets. 展开更多
关键词 semantic segmentation attention mechanism multiscale feature convolutional neural network(CNN) residual network(ResNet)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部