期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于情感模型的文本意见分类方法 被引量:4
1
作者 罗邦慧 曾剑平 +1 位作者 段江娇 吴承荣 《计算机工程》 CAS CSCD 北大核心 2015年第5期175-179,共5页
基于向量空间模型、潜在语义分析等传统文本意见分类模型将文本映射到词汇或语义空间中,侧重于词汇的辨别能力,无法对映像空间给出明确的语义说明,导致其扩展性、准确率等方面的性能受到限制。为此,在人类情感分类理论的基础上,假设文... 基于向量空间模型、潜在语义分析等传统文本意见分类模型将文本映射到词汇或语义空间中,侧重于词汇的辨别能力,无法对映像空间给出明确的语义说明,导致其扩展性、准确率等方面的性能受到限制。为此,在人类情感分类理论的基础上,假设文本中的意见表达与人们的情感存在较强的关联,结合词汇语义扩展、特征选择等方法构造3种情感表示模型,把表达人类情感倾向的文本转换到情感空间中,利用情感模型对国外股票论坛信息提取情感特征,构建情感模型,并设计文本意见分类方法。针对实际股票论坛的数据进行实验,结果表明,该分类方法能获得较高的分类准确率。 展开更多
关键词 Ekman模型 意见分类 特征选择 情感模型 机器学习
下载PDF
《关于分类推进人才评价机制改革的指导意见》印发
2
《河南科技》 2018年第7期3-3,共1页
近日,中共中央办公厅、国务院办公厅印发了《关于分类推进人才评价机制改革的指导意见》,并发出通知,要求各地区各部门结合实际认真贯彻落实.
关键词 《关于分类推进人才评价机制改革的指导意见 中国
下载PDF
《山西省分类推进事业单位改革的实施意见》出台
3
《农业技术与装备》 2012年第6期17-17,共1页
2012年2月9日上午,山西省委副书记、省长王君主持召开省事业单位改革领导组会议,听取全省分类推进事业单位改革工作情况汇报,讨论通过《山西省分类推进事业单位改革的实施意见》,研究部署相关工作。省委常委、常务副省长李小鹏出席。
关键词 《山西省分类推进事业单位改革的实施意见 事业单位 党中央 国务院
下载PDF
Performance analysis of new word weighting procedures for opinion mining 被引量:2
4
作者 G.R.BRINDHA P.SWAMINATHAN B.SANTHI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2016年第11期1186-1198,共13页
The proliferation of forums and blogs leads to challenges and opportunities for processing large amounts of information. The information shared on various topics often contains opinionated words which are qualitative ... The proliferation of forums and blogs leads to challenges and opportunities for processing large amounts of information. The information shared on various topics often contains opinionated words which are qualitative in nature. These qualitative words need statistical computations to convert them into useful quantitative data. This data should be processed properly since it expresses opinions. Each of these opinion bearing words differs based on the significant meaning it conveys. To process the linguistic meaning of words into data and to enhance opinion mining analysis, we propose a novel weighting scheme, referred to as inferred word weighting(IWW). IWW is computed based on the significance of the word in the document(SWD) and the significance of the word in the expression(SWE) to enhance their performance. The proposed weighting methods give an analytic view and provide appropriate weights to the words compared to existing methods. In addition to the new weighting methods, another type of checking is done on the performance of text classification by including stop-words. Generally, stop-words are removed in text processing. When this new concept of including stop-words is applied to the proposed and existing weighting methods, two facts are observed:(1) Classification performance is enhanced;(2) The outcome difference between inclusion and exclusion of stop-words is smaller in the proposed methods, and larger in existing methods. The inferences provided by these observations are discussed. Experimental results of the benchmark data sets show the potential enhancement in terms of classification accuracy. 展开更多
关键词 Inferred word weight Opinion mining Supervised classification Support vector machine(SVM) Machine learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部