Giant magnetostrictive actuators (GMAs) often work in a close-loop feedback system. This system needs independent sensors which may be difficult to be fixed, besides, excessive sensors may cause more unpredicted probl...Giant magnetostrictive actuators (GMAs) often work in a close-loop feedback system. This system needs independent sensors which may be difficult to be fixed, besides, excessive sensors may cause more unpredicted problems in a large system. This paper aims to develop a self-sensing GMA. An observer based on piezomagnetic equations is constructed to estimate the stress and strain of the magnetostrictive material. The observer based self-sensing approach depends on the facts that the magnetic field is controllable and that the magnetic induction is measurable. Aiming at the nonlinear hysteresis in magnetization, a hys- teresis compensation observer based on Preisach model is developed. Experiment verified the availability of the observer approach, and the hysteresis compensation observer has higher tracking precision than linear observer for dynamic force sensing.展开更多
This paper focuses on how the implementation of a single regional political instrument is perceived, understood and communicated. Designed as a regional political instrument, the Norwegian Ministry of Transport and Co...This paper focuses on how the implementation of a single regional political instrument is perceived, understood and communicated. Designed as a regional political instrument, the Norwegian Ministry of Transport and Communications started a pilot project: "Driver education as a part of upper secondary school in district Norway". The focal point in this paper is to explore how the professional participants understand and interpret the project as a regional political instrument in order to maintain the local community, identity and local belonging. The theoretical approach is based on Giddens's actor/structure theory, while the analysis based on discourse analysis, in the analysis we separated the arguments used in the professional discourse. We detected different categories of argument in the discourses among the professionals. In addition to the professional discourse, we became aware of a personal discourse. In both discourses the political instrument was perceived to be important in order to maintain the local community, create equality and maintain local identity and a sense of belonging.展开更多
One of the main problems in controlling the shape of active structures (AS) is to determine the actuations that drive the structure from the current state to the target state. Model-based methods such as stochastic ...One of the main problems in controlling the shape of active structures (AS) is to determine the actuations that drive the structure from the current state to the target state. Model-based methods such as stochastic search require a known type of load and relatively long computational time, which limits the practical use of AS in civil engineering. Moreover, additive errors may be produced because of the discrepancy between analytic models and real structures. To overcome these limitations, this paper presents a compound system called WAS, which combines AS with a wireless sensor and actuator network (WSAN). A bio-inspired control framework imitating the activity of the nervous systems of animals is proposed for WAS. A typical example is tested for verification. In the example, a triangular tensegrity prism that aims to maintain its original height is integrated with a WSAN that consists of a central controller, three actuators, and three sensors. The result demonstrates the feasibility of the proposed concept and control framework in cases of unknown loads that include different types, distributions, magnitudes, and directions. The proposed control framework can also act as a supplementary means to improve the efficiency and accuracy of control frameworks based on a common stochastic search.展开更多
Large space truss structure is widely used in spacecrafts.The vibration of this kind of structure will cause some serious problems.For instance,it will disturb the work of the payloads which are supported on the truss...Large space truss structure is widely used in spacecrafts.The vibration of this kind of structure will cause some serious problems.For instance,it will disturb the work of the payloads which are supported on the truss,even worse,it will deactivate the spacecrafts.Therefore,it is highly in need of executing vibration control for large space truss structure.Large space intelligent truss system(LSITS) is not a normal truss structure but a complex truss system consisting of common rods and active rods,and there are at least one actuator and one sensor in each active rod.One of the key points in the vibration control for LSITS is the location assignment of actuators and sensors.The positions of actuators and sensors will directly determine the properties of the control system,such as stability,controllability,observability,etc.In this paper,placement optimization of actuators and sensors(POAS) and decentralized adaptive fuzzy control methods are presented to solve the vibration control problem.The electro-mechanical coupled equations of the active rod are established,and the optimization criterion which does not depend upon control methods is proposed.The optimal positions of actuators and sensors in LSITS are obtained by using genetic algorithm(GA).Furthermore,the decentralized adaptive fuzzy vibration controller is designed to control LSITS.The LSITS dynamic equations with considering those remaining modes are derived.The adaptive fuzzy control scheme is improved via sliding control method.One T-typed truss structure is taken as an example and a demonstration experiment is carried out.The experimental results show that the GA is reliable and valid for placement optimization of actuators and sensors,and the adaptive fuzzy controller can effectively suppress the vibration of LSITS without control spillovers and observation spillovers.展开更多
基金Project supported by the National Natural Science Foundation ofChina (No. 50105019)the China Postdoctoral Science Foundation (No. 20060390337)
文摘Giant magnetostrictive actuators (GMAs) often work in a close-loop feedback system. This system needs independent sensors which may be difficult to be fixed, besides, excessive sensors may cause more unpredicted problems in a large system. This paper aims to develop a self-sensing GMA. An observer based on piezomagnetic equations is constructed to estimate the stress and strain of the magnetostrictive material. The observer based self-sensing approach depends on the facts that the magnetic field is controllable and that the magnetic induction is measurable. Aiming at the nonlinear hysteresis in magnetization, a hys- teresis compensation observer based on Preisach model is developed. Experiment verified the availability of the observer approach, and the hysteresis compensation observer has higher tracking precision than linear observer for dynamic force sensing.
文摘This paper focuses on how the implementation of a single regional political instrument is perceived, understood and communicated. Designed as a regional political instrument, the Norwegian Ministry of Transport and Communications started a pilot project: "Driver education as a part of upper secondary school in district Norway". The focal point in this paper is to explore how the professional participants understand and interpret the project as a regional political instrument in order to maintain the local community, identity and local belonging. The theoretical approach is based on Giddens's actor/structure theory, while the analysis based on discourse analysis, in the analysis we separated the arguments used in the professional discourse. We detected different categories of argument in the discourses among the professionals. In addition to the professional discourse, we became aware of a personal discourse. In both discourses the political instrument was perceived to be important in order to maintain the local community, create equality and maintain local identity and a sense of belonging.
基金Project supported by the National Key Technology R&D Program of China(No.2012BAJ07B03)the National Natural Science Foundation of China(Nos.51178415 and 51578491)
文摘One of the main problems in controlling the shape of active structures (AS) is to determine the actuations that drive the structure from the current state to the target state. Model-based methods such as stochastic search require a known type of load and relatively long computational time, which limits the practical use of AS in civil engineering. Moreover, additive errors may be produced because of the discrepancy between analytic models and real structures. To overcome these limitations, this paper presents a compound system called WAS, which combines AS with a wireless sensor and actuator network (WSAN). A bio-inspired control framework imitating the activity of the nervous systems of animals is proposed for WAS. A typical example is tested for verification. In the example, a triangular tensegrity prism that aims to maintain its original height is integrated with a WSAN that consists of a central controller, three actuators, and three sensors. The result demonstrates the feasibility of the proposed concept and control framework in cases of unknown loads that include different types, distributions, magnitudes, and directions. The proposed control framework can also act as a supplementary means to improve the efficiency and accuracy of control frameworks based on a common stochastic search.
基金supported by the National Natural Science Foundation of China (Grant No. 10472006)
文摘Large space truss structure is widely used in spacecrafts.The vibration of this kind of structure will cause some serious problems.For instance,it will disturb the work of the payloads which are supported on the truss,even worse,it will deactivate the spacecrafts.Therefore,it is highly in need of executing vibration control for large space truss structure.Large space intelligent truss system(LSITS) is not a normal truss structure but a complex truss system consisting of common rods and active rods,and there are at least one actuator and one sensor in each active rod.One of the key points in the vibration control for LSITS is the location assignment of actuators and sensors.The positions of actuators and sensors will directly determine the properties of the control system,such as stability,controllability,observability,etc.In this paper,placement optimization of actuators and sensors(POAS) and decentralized adaptive fuzzy control methods are presented to solve the vibration control problem.The electro-mechanical coupled equations of the active rod are established,and the optimization criterion which does not depend upon control methods is proposed.The optimal positions of actuators and sensors in LSITS are obtained by using genetic algorithm(GA).Furthermore,the decentralized adaptive fuzzy vibration controller is designed to control LSITS.The LSITS dynamic equations with considering those remaining modes are derived.The adaptive fuzzy control scheme is improved via sliding control method.One T-typed truss structure is taken as an example and a demonstration experiment is carried out.The experimental results show that the GA is reliable and valid for placement optimization of actuators and sensors,and the adaptive fuzzy controller can effectively suppress the vibration of LSITS without control spillovers and observation spillovers.