期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进YOLOv5网络模型的无人机影像道路目标检测
1
作者
曹佃龙
《北京测绘》
2024年第6期936-941,共6页
针对无人机遥感道路影像内目标分布混乱且尺寸差异大、负样本所占比例较高等问题,提出了基于YOLOv5X的无人机遥感影像道路目标检测模型RA_YOLOv5。采用感受野-坐标注意力卷积替换骨干网络内的常规卷积核,然后以空洞-空间金字塔池化-通...
针对无人机遥感道路影像内目标分布混乱且尺寸差异大、负样本所占比例较高等问题,提出了基于YOLOv5X的无人机遥感影像道路目标检测模型RA_YOLOv5。采用感受野-坐标注意力卷积替换骨干网络内的常规卷积核,然后以空洞-空间金字塔池化-通道注意力层替换原始特征金字塔池化层;在特征融合网络中引入自适应特征融合层,通过特征图加权融合解决不同尺寸检测图之间样本、背景矛盾的问题;使用解耦检测头分别计算回归、分类任务,并替换损失函数以缓解正负样本不均衡问题。实验结果表明,RA_YOLOv5在VisDrone数据集上平均精度均值达到90.42%,较YOLOv5X提高了7.85%,在测试环境下,检测帧数达到35.46帧每秒,能够实际输出检测结果,同时具有良好的稳定性,能够在道路巡检、交通流量监控、应急事故处理等多种场景下发挥重要作用。
展开更多
关键词
无人机遥感
道路目标检测
感受野-坐标注意力
自适应特征融合
解耦检测头
下载PDF
职称材料
题名
基于改进YOLOv5网络模型的无人机影像道路目标检测
1
作者
曹佃龙
机构
中国建筑材料工业地质勘查中心辽宁总队
出处
《北京测绘》
2024年第6期936-941,共6页
文摘
针对无人机遥感道路影像内目标分布混乱且尺寸差异大、负样本所占比例较高等问题,提出了基于YOLOv5X的无人机遥感影像道路目标检测模型RA_YOLOv5。采用感受野-坐标注意力卷积替换骨干网络内的常规卷积核,然后以空洞-空间金字塔池化-通道注意力层替换原始特征金字塔池化层;在特征融合网络中引入自适应特征融合层,通过特征图加权融合解决不同尺寸检测图之间样本、背景矛盾的问题;使用解耦检测头分别计算回归、分类任务,并替换损失函数以缓解正负样本不均衡问题。实验结果表明,RA_YOLOv5在VisDrone数据集上平均精度均值达到90.42%,较YOLOv5X提高了7.85%,在测试环境下,检测帧数达到35.46帧每秒,能够实际输出检测结果,同时具有良好的稳定性,能够在道路巡检、交通流量监控、应急事故处理等多种场景下发挥重要作用。
关键词
无人机遥感
道路目标检测
感受野-坐标注意力
自适应特征融合
解耦检测头
Keywords
unmanned aerial vehicle(UAV)remote sensing
road target detection
receptive field
-
coordinate attention
adaptive feature fusion
decoupled detection head
分类号
P237 [天文地球—摄影测量与遥感]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进YOLOv5网络模型的无人机影像道路目标检测
曹佃龙
《北京测绘》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部