The static voltage stability of the power system integrating wind farms adopting different kinds of wind turbines is analyzed. Through the simulation of one certain local power grid in Xinjiang Uygur Autonomous Region...The static voltage stability of the power system integrating wind farms adopting different kinds of wind turbines is analyzed. Through the simulation of one certain local power grid in Xinjiang Uygur Autonomous Region, the PV curves at the point of common coupling (PCC), key buses and important substations are plotted; the variation of voltage as well as the limit and margin of static stability are analyzed. It is resulted from the simulation that the limit of static voltage at weak nodes is lower, and the static voltage of the power system with wind farms adopting doubly-fed induction generators (DFIG) is more stable than that with wind farms adopting common asynchronous generators.展开更多
This paper is a contribution to the development of real time simulators for energy conversion research with respects to the "hardware in the loop simulation" concept. The focus is on the study of marine current kine...This paper is a contribution to the development of real time simulators for energy conversion research with respects to the "hardware in the loop simulation" concept. The focus is on the study of marine current kinetics energy conversion from into electrical energy using a marine current turbine simulator, developed in three stages. In the first stage the marine current turbine is emulated with the help of an induction drive who reproduces at its shaft the characteristics of a real turbine. It is connected with a load break used to force the emulator to respect on its shaft the characteristics of the real turbine. In the second stage, the induction drive is connected on the shaft with a doubly feed induction generator, for the study of energy conversion. The emulator respects the working regime, developed in the previous step, of a real turbine due to the control of the drive. In the third stage the induction machine emulating the turbine is interconnected with the generator and the load break. This assembly is used for the dynamic study of the marine current turbine. The break is used to create extra loads on the shaft and a variable inertial moment.展开更多
The aim of this study was to design three-phase induction motors with aluminum and copper cage, in the range 0.75 ÷22 kW, to fulfill the 1E3 efficiency level according to typical performance and standard constrai...The aim of this study was to design three-phase induction motors with aluminum and copper cage, in the range 0.75 ÷22 kW, to fulfill the 1E3 efficiency level according to typical performance and standard constraints. The proposed study has concerned TEFC ( totally Enclosed Fan-Cooled ), 400 V, 50 Hz, SI duty three phase squirrel-cage induction motors only. The motors' designs, with AI and Cu cage, have been optimized in order to reach the minimum efficiency level IE3 at lowest active material costs and satisfy the physical and performance constraints of the designs, which are the motor specifications. A suitable optimization procedure has been used which allowed to find the "best design" by chancing the geometric dimensions of the stator, rotor shape, the stator winding and the stack length. In order to guarantee the goodness and feasibility of the optimized designs, several constrains have been imposed.展开更多
The purpose of this paper is to analyze influence of design data on a component (1 - 2s)~ in stator currents of induction motors, mainly used for cage fault diagnosis. This paper shows that such an approach does not...The purpose of this paper is to analyze influence of design data on a component (1 - 2s)~ in stator currents of induction motors, mainly used for cage fault diagnosis. This paper shows that such an approach does not always lead to a correct outcome. The considerations are based on a "classical" model of induction motors extended to cage asymmetry by introducing cage asymmetry factors ko~ and ka. It has been found that in order to estimate the level of the component (1 - 2s)7~, it is enough to know the pole-pair number "p" and the number of rotor slots "N". The main objective of the paper is to provide engineers with simple qualitative prediction of effects due to cage faults for various motors when information on design data is very limited.展开更多
基金National Natural Science Foundation of China(5076700350867004)Autonomous university research projects(XJEDU2007105)
文摘The static voltage stability of the power system integrating wind farms adopting different kinds of wind turbines is analyzed. Through the simulation of one certain local power grid in Xinjiang Uygur Autonomous Region, the PV curves at the point of common coupling (PCC), key buses and important substations are plotted; the variation of voltage as well as the limit and margin of static stability are analyzed. It is resulted from the simulation that the limit of static voltage at weak nodes is lower, and the static voltage of the power system with wind farms adopting doubly-fed induction generators (DFIG) is more stable than that with wind farms adopting common asynchronous generators.
文摘This paper is a contribution to the development of real time simulators for energy conversion research with respects to the "hardware in the loop simulation" concept. The focus is on the study of marine current kinetics energy conversion from into electrical energy using a marine current turbine simulator, developed in three stages. In the first stage the marine current turbine is emulated with the help of an induction drive who reproduces at its shaft the characteristics of a real turbine. It is connected with a load break used to force the emulator to respect on its shaft the characteristics of the real turbine. In the second stage, the induction drive is connected on the shaft with a doubly feed induction generator, for the study of energy conversion. The emulator respects the working regime, developed in the previous step, of a real turbine due to the control of the drive. In the third stage the induction machine emulating the turbine is interconnected with the generator and the load break. This assembly is used for the dynamic study of the marine current turbine. The break is used to create extra loads on the shaft and a variable inertial moment.
文摘The aim of this study was to design three-phase induction motors with aluminum and copper cage, in the range 0.75 ÷22 kW, to fulfill the 1E3 efficiency level according to typical performance and standard constraints. The proposed study has concerned TEFC ( totally Enclosed Fan-Cooled ), 400 V, 50 Hz, SI duty three phase squirrel-cage induction motors only. The motors' designs, with AI and Cu cage, have been optimized in order to reach the minimum efficiency level IE3 at lowest active material costs and satisfy the physical and performance constraints of the designs, which are the motor specifications. A suitable optimization procedure has been used which allowed to find the "best design" by chancing the geometric dimensions of the stator, rotor shape, the stator winding and the stack length. In order to guarantee the goodness and feasibility of the optimized designs, several constrains have been imposed.
文摘The purpose of this paper is to analyze influence of design data on a component (1 - 2s)~ in stator currents of induction motors, mainly used for cage fault diagnosis. This paper shows that such an approach does not always lead to a correct outcome. The considerations are based on a "classical" model of induction motors extended to cage asymmetry by introducing cage asymmetry factors ko~ and ka. It has been found that in order to estimate the level of the component (1 - 2s)7~, it is enough to know the pole-pair number "p" and the number of rotor slots "N". The main objective of the paper is to provide engineers with simple qualitative prediction of effects due to cage faults for various motors when information on design data is very limited.