In order to solve the problem of metal impurities mixed in the production line of wood pulp nonwoven raw materials,intelligent metal detection and disposal automation equipment is designed.Based on the principle of el...In order to solve the problem of metal impurities mixed in the production line of wood pulp nonwoven raw materials,intelligent metal detection and disposal automation equipment is designed.Based on the principle of electromagnetic induction,the precise positioning of metal coordinates is realized by initial inspection and multi-directional re-inspection.Based on a geometry optimization driving algorithm,the cutting area is determined by locating the center of the circle that covers the maximum area.This approach aims to minimize the cutting area and maximize the use of materials.Additionally,the method strives to preserve as many fabrics at the edges as possible by employing the farthest edge covering circle algorithm.Based on a speed compensation algorithm,the flexible switching of upper and lower rolls is realized to ensure the maximum production efficiency.Compared with the metal detection device in the existing production line,the designed automation equipment has the advantages of higher detection sensitivity,more accurate metal coordinate positioning,smaller cutting material areas and higher production efficiency,which can make the production process more continuous,automated and intelligent.展开更多
Under various electromagnetic induction heating powers,different Al3Ti/Al composites were fabricated by in-situ synthesis method from aluminum and titanium fibers.Microstructures and particles distribution of the comp...Under various electromagnetic induction heating powers,different Al3Ti/Al composites were fabricated by in-situ synthesis method from aluminum and titanium fibers.Microstructures and particles distribution of the composites were examined by XRD,SEM and EDS.The results show that no other intermetallic compounds beside Al3Ti can be in-situ synthesized.Around the titanium fibers,the reaction zones and diffusion zones can be obviously found.Due to the stirring of the electromagnetic function,the formation of the micro-cracks inside the reaction zone was conducive to the peeling off of the Al3Ti particles,and ensures the continuous reaction between liquid aluminum and titanium fibers,as well as the diffusion of Al3Ti particles.At the same time,there were secondary splits of Al3Ti particles located in diffusion zones.Two-body abrasion test shows that with the increase of induction heating power,the wear rates of the composites reduced and the number of grooves decreased.展开更多
In order to measure the position and orientation of in-vivo medical micro-devices without the line-of- sight constraints, a wireless magnetic sensor is developed for an electromagnetic localization method. In the elec...In order to measure the position and orientation of in-vivo medical micro-devices without the line-of- sight constraints, a wireless magnetic sensor is developed for an electromagnetic localization method. In the electromagnetic localization system, the wireless magnetic sensor is embedded in the micro-devices to measure alternating magnetic signals. The wireless magnetic sensor is composed of an induction coil, a signal processor, a radio frequency (R.F) transmitter, a power manager and batteries. Based on the principle of electromagnetic induction, the induction coil converts the alternating magnetic signals into electrical signals. Via the RF transmitter, the useful data am wirelessly sent outside the body. According to the relation between the magnetic signals and the location, the position and orientation of the micro-devices can be calculated. The experiments demonstrate the feasibility of localizing in-vivo medical micro-devices with the wireless magnetic sensor. The novel localization system is accurate and robust.展开更多
We study the interaction of a weak probe field, having two circular polarized components, i.e., cr- and a+ polarization, with an optically dense medium of four-level atoms in a double-A configuration, which is mediat...We study the interaction of a weak probe field, having two circular polarized components, i.e., cr- and a+ polarization, with an optically dense medium of four-level atoms in a double-A configuration, which is mediated by the electromagnetically induced transparency with a polarized control light with spatially inhomogeneous profile. We analyse the deflection of the polarized probe light and we find that we can selectively determine which circular component will be deflected after the polarized probe light enters the atom medium via adjusting the polarization and detuning of the control field.展开更多
Two types of lanthanide coordination polymers, namely, [Ln(PA)(NO3)(DMA)3]n (Ln=Gd (1), Dy (2), Eu (3), Tb (4)) (type I), and {[Ln2(PA)3(DMF)4]'2DMF} (Ln=Eu (5), Tb (6)) (type II) (PA=P...Two types of lanthanide coordination polymers, namely, [Ln(PA)(NO3)(DMA)3]n (Ln=Gd (1), Dy (2), Eu (3), Tb (4)) (type I), and {[Ln2(PA)3(DMF)4]'2DMF} (Ln=Eu (5), Tb (6)) (type II) (PA=Pamoic acid, DMA=dimethylacetamide, DMF=N,N-dimethylformamide), have been synthesized by the reaction of Ln(NO3)a-6H20 with pamoic acid through layer diffusion method. These complexes were characterized by single crystal X-ray diffraction, infrared spectroscopy (IR), thermogravimetric analysis (TGA), fluorescence and magnetic measurements. Solvents and lanthanide atoms in the reaction play an important role in controlling different structures. Type I demonstrated 1-D linear chain structure connected by Ln atoms and PA ligands. Type II exhibited non-interpenetrating 3-D 6-connected 43612 nets based on binuclear [Ln2(CO2)6(DMF)4] cores. Magnetic properties of complexes 1-4 were investigated in details. Complex 1 shows significant magnetocaloric effect with -△Sm=20.37 J kg^-1 K^-1 at 3.0 K and 7 T. Complex 2 exhibits slow relaxation of the magnetization. Complexes 3-6 exhibit both ligand- and metal-centered fluorescent properties. Complex 6 demonstrates fluorescent sensing of DMF and Cu^2+ ion.展开更多
基金National Key Research and Development Program of China(Nos.2022YFB4700600 and 2022YFB4700605)。
文摘In order to solve the problem of metal impurities mixed in the production line of wood pulp nonwoven raw materials,intelligent metal detection and disposal automation equipment is designed.Based on the principle of electromagnetic induction,the precise positioning of metal coordinates is realized by initial inspection and multi-directional re-inspection.Based on a geometry optimization driving algorithm,the cutting area is determined by locating the center of the circle that covers the maximum area.This approach aims to minimize the cutting area and maximize the use of materials.Additionally,the method strives to preserve as many fabrics at the edges as possible by employing the farthest edge covering circle algorithm.Based on a speed compensation algorithm,the flexible switching of upper and lower rolls is realized to ensure the maximum production efficiency.Compared with the metal detection device in the existing production line,the designed automation equipment has the advantages of higher detection sensitivity,more accurate metal coordinate positioning,smaller cutting material areas and higher production efficiency,which can make the production process more continuous,automated and intelligent.
基金Project(2015DFR50990-01)supported by International Cooperation Project of Ministry of Science and Technology of ChinaProjects(18JS060,18JS075)supported by the Shaanxi Key Laboratory of Nano-materials and Technology,China。
文摘Under various electromagnetic induction heating powers,different Al3Ti/Al composites were fabricated by in-situ synthesis method from aluminum and titanium fibers.Microstructures and particles distribution of the composites were examined by XRD,SEM and EDS.The results show that no other intermetallic compounds beside Al3Ti can be in-situ synthesized.Around the titanium fibers,the reaction zones and diffusion zones can be obviously found.Due to the stirring of the electromagnetic function,the formation of the micro-cracks inside the reaction zone was conducive to the peeling off of the Al3Ti particles,and ensures the continuous reaction between liquid aluminum and titanium fibers,as well as the diffusion of Al3Ti particles.At the same time,there were secondary splits of Al3Ti particles located in diffusion zones.Two-body abrasion test shows that with the increase of induction heating power,the wear rates of the composites reduced and the number of grooves decreased.
基金Sup.ported by the High TechnologyResearch and Development Programme of China (No.2006AA04Z368), the National Natural Science Foundation of China (No. 30900320, 30570485) and Innovation Program of Shanghai Municipal Education Commission (No. 10YZ93).
文摘In order to measure the position and orientation of in-vivo medical micro-devices without the line-of- sight constraints, a wireless magnetic sensor is developed for an electromagnetic localization method. In the electromagnetic localization system, the wireless magnetic sensor is embedded in the micro-devices to measure alternating magnetic signals. The wireless magnetic sensor is composed of an induction coil, a signal processor, a radio frequency (R.F) transmitter, a power manager and batteries. Based on the principle of electromagnetic induction, the induction coil converts the alternating magnetic signals into electrical signals. Via the RF transmitter, the useful data am wirelessly sent outside the body. According to the relation between the magnetic signals and the location, the position and orientation of the micro-devices can be calculated. The experiments demonstrate the feasibility of localizing in-vivo medical micro-devices with the wireless magnetic sensor. The novel localization system is accurate and robust.
基金Supported by the National Fundamental Research Program under Grant No. 2007CB925204the National Natural Science Foundation under Grant Nos. 10947135 and 10775048+4 种基金the Opening Project of Key Laboratory of Low Dimensional Quantum Structures and Quantum Control (Hunan Normal University),Ministry of Education, under Grant No. QSQC0903the Scientific Research Fund of Hunan Provincial Education Department under Grant No. 09C062the Construct Program of the Key Discipline in Hunan Provincethe Construct Program of the Key discipline in Changsha University of Science and Technologythe Foundation of Changsha University of Science and Technology
文摘We study the interaction of a weak probe field, having two circular polarized components, i.e., cr- and a+ polarization, with an optically dense medium of four-level atoms in a double-A configuration, which is mediated by the electromagnetically induced transparency with a polarized control light with spatially inhomogeneous profile. We analyse the deflection of the polarized probe light and we find that we can selectively determine which circular component will be deflected after the polarized probe light enters the atom medium via adjusting the polarization and detuning of the control field.
基金supported by the National Natural Science Foundation of China(21571092,21403102)the Natural Science Foundation of Shandong Province(ZR2012BQ023)the University Scientific Research Development Plan of the Education Department of Shandong Province(J14LC10)
文摘Two types of lanthanide coordination polymers, namely, [Ln(PA)(NO3)(DMA)3]n (Ln=Gd (1), Dy (2), Eu (3), Tb (4)) (type I), and {[Ln2(PA)3(DMF)4]'2DMF} (Ln=Eu (5), Tb (6)) (type II) (PA=Pamoic acid, DMA=dimethylacetamide, DMF=N,N-dimethylformamide), have been synthesized by the reaction of Ln(NO3)a-6H20 with pamoic acid through layer diffusion method. These complexes were characterized by single crystal X-ray diffraction, infrared spectroscopy (IR), thermogravimetric analysis (TGA), fluorescence and magnetic measurements. Solvents and lanthanide atoms in the reaction play an important role in controlling different structures. Type I demonstrated 1-D linear chain structure connected by Ln atoms and PA ligands. Type II exhibited non-interpenetrating 3-D 6-connected 43612 nets based on binuclear [Ln2(CO2)6(DMF)4] cores. Magnetic properties of complexes 1-4 were investigated in details. Complex 1 shows significant magnetocaloric effect with -△Sm=20.37 J kg^-1 K^-1 at 3.0 K and 7 T. Complex 2 exhibits slow relaxation of the magnetization. Complexes 3-6 exhibit both ligand- and metal-centered fluorescent properties. Complex 6 demonstrates fluorescent sensing of DMF and Cu^2+ ion.