2型单纯疱疹病毒(Herpes simplex virus type 2,HSV-2)是引起生殖器疱疹的主要病原体。生殖器疱疹主要表现为生殖器和肛周皮肤黏膜疱疹或溃疡,是一种慢性、复发性、难以治愈的性传播疾病,临床治疗多以抑制病毒复制的核苷类药物阿昔洛韦...2型单纯疱疹病毒(Herpes simplex virus type 2,HSV-2)是引起生殖器疱疹的主要病原体。生殖器疱疹主要表现为生殖器和肛周皮肤黏膜疱疹或溃疡,是一种慢性、复发性、难以治愈的性传播疾病,临床治疗多以抑制病毒复制的核苷类药物阿昔洛韦及其衍生物更昔洛韦、喷昔洛韦等为主。这些药物对缓解症状、缩短病程有一定作用,但难以达到根治的目的,长期应用易产生耐药,且对其合并症基本无效。作用于HSV-2其他感染周期的药物成为人类探索的新领域。HSV-2感染宿主细胞是一个复杂的多阶段过程,包括黏附、穿入、核转运、基因组复制、衣壳组装、子代病毒释放等多个步骤,涉及多种细胞和病毒蛋白的活性。本文对HSV-2体外感染周期详细步骤及其分子机制作一综述,以期深入了解其感染机制,并为研制作用于不同感染阶段的抗HSV-2药物提供参考。展开更多
Hepatitis C is recognized as a major threat to global public health. The current treatment of patients with chronic hepatitis C is the addition of ribavirin to interferon-based therapy which has limited efficacy, poor...Hepatitis C is recognized as a major threat to global public health. The current treatment of patients with chronic hepatitis C is the addition of ribavirin to interferon-based therapy which has limited efficacy, poor tolerability, and significant expense. New treatment options that are more potent and less toxic are much needed. Moreover, more effective treatment is an urgent priority for those who relapse or do not respond to current regimens. A major obstacle in combating hepatitis C virus (HCV) infection is that the fidelity of the viral replication machinery is notoriously low, thus enabling the virus to quickly develop mutations that resist compounds targeting viral enzymes. Therefore, an approach targeting the host cofactors, which are indispensable for the propagation of viruses, may be an ideal target for the development of antiviral agents because they have a lower rate of mutation than that of the viral genome, as long as they have no side effects to patients. Drugs targeting, for example, receptors of viral entry, host metabolism or nuclear receptors, which are factors required to complete the HCV life cycle, may be more effective in combating the viral infection. Targeting host cofactors of the HCV life cycle is an attractive concept because it imposes a higher genetic barrier for resistance than direct antiviral compounds. However the principle drawback of this strategy is the greater potential for cellular toxicity.展开更多
The construction of the first infectious clone JFH-1 speeds up the research on hepatitis C virus (HCV). However, Huh7 cell line was the only highly permissive cell line for HCV infection and only a few clones were ful...The construction of the first infectious clone JFH-1 speeds up the research on hepatitis C virus (HCV). However, Huh7 cell line was the only highly permissive cell line for HCV infection and only a few clones were fully permissive. In this study, two different fully permissive clones of Huh7 cells, Huh7.5.1 and Huh7-Lunet-CD81 (Lunet-CD81) cells were compared for their responses upon HCV infection. The virus replication level was found slightly higher in Huh7.5.1 cells than that in Lunet-CD81 cells. Viability of Huh7.5.1 cells but not of Lunet-CD81 cells was reduced significantly after HCV infection. Further analysis showed that the cell cycle of infected Huh7.5.1 cells was arrested at G1 phase. The G1/S transition was blocked by HCV infection in Huh7.5.1 cells as shown by the cell cycle synchronization analysis. Genes related to cell cycle regulation was modified by HCV infection and gene interaction analysis in GeneSpring GX in Direct Interactions mode highlighted 31 genes. In conclusion, the responses of those two cell lines were different upon HCV infection. HCV infection blocked G1/S transition and cell cycle progress, thus reduced the cell viability in Huh7.5.1 cells but not in Lunet-CD81 cells. Lunet-CD81 cells might be suitable for long term infection studies of HCV.展开更多
This paper demonstrates that the susceptible-infected-removed (SIR) model applied to the early phase of an epidemic can be used to determine epidemic parameters reliably. As a case study, the SIR model is applied to...This paper demonstrates that the susceptible-infected-removed (SIR) model applied to the early phase of an epidemic can be used to determine epidemic parameters reliably. As a case study, the SIR model is applied to the fatality data of the 2009 fall wave cycle of the A(H1N1) pandemic in 12 European countries. It is observed that the best estimates of the basic reproduction number R0 and the mean duration of the infection period l/r/ lie on a curve in the scatterplots, indicating the existence of a nearly-invariant quantity which corresponds to the duration of the epidemic. Spline interpolation applied to the early phase of the epidemic, an approximately 10-week period, together with a future control point in the stabilization region, is sufficient to estimate model parameters. The SIR model is run over a wide range of parameters and estimates of R0 in the range 1.2- 2.0 match the values in the literature. The duration of the infection period, 1/η is estimated to be in the range 2.0-7.0 days. Longer infection periods are tied to spatial characteristics of the spread of the epidemic.展开更多
In this paper, we discuss the SIV epidemic model with impulsive vaccination and infection-age. Bifurcation theory and Lyapunov-Schmidt series expansion are used to show the existence of the positive periodic solutions...In this paper, we discuss the SIV epidemic model with impulsive vaccination and infection-age. Bifurcation theory and Lyapunov-Schmidt series expansion are used to show the existence of the positive periodic solutions under some conditions.展开更多
文摘2型单纯疱疹病毒(Herpes simplex virus type 2,HSV-2)是引起生殖器疱疹的主要病原体。生殖器疱疹主要表现为生殖器和肛周皮肤黏膜疱疹或溃疡,是一种慢性、复发性、难以治愈的性传播疾病,临床治疗多以抑制病毒复制的核苷类药物阿昔洛韦及其衍生物更昔洛韦、喷昔洛韦等为主。这些药物对缓解症状、缩短病程有一定作用,但难以达到根治的目的,长期应用易产生耐药,且对其合并症基本无效。作用于HSV-2其他感染周期的药物成为人类探索的新领域。HSV-2感染宿主细胞是一个复杂的多阶段过程,包括黏附、穿入、核转运、基因组复制、衣壳组装、子代病毒释放等多个步骤,涉及多种细胞和病毒蛋白的活性。本文对HSV-2体外感染周期详细步骤及其分子机制作一综述,以期深入了解其感染机制,并为研制作用于不同感染阶段的抗HSV-2药物提供参考。
文摘Hepatitis C is recognized as a major threat to global public health. The current treatment of patients with chronic hepatitis C is the addition of ribavirin to interferon-based therapy which has limited efficacy, poor tolerability, and significant expense. New treatment options that are more potent and less toxic are much needed. Moreover, more effective treatment is an urgent priority for those who relapse or do not respond to current regimens. A major obstacle in combating hepatitis C virus (HCV) infection is that the fidelity of the viral replication machinery is notoriously low, thus enabling the virus to quickly develop mutations that resist compounds targeting viral enzymes. Therefore, an approach targeting the host cofactors, which are indispensable for the propagation of viruses, may be an ideal target for the development of antiviral agents because they have a lower rate of mutation than that of the viral genome, as long as they have no side effects to patients. Drugs targeting, for example, receptors of viral entry, host metabolism or nuclear receptors, which are factors required to complete the HCV life cycle, may be more effective in combating the viral infection. Targeting host cofactors of the HCV life cycle is an attractive concept because it imposes a higher genetic barrier for resistance than direct antiviral compounds. However the principle drawback of this strategy is the greater potential for cellular toxicity.
基金supported partly by grants of National Nature Science Foundation of China (grant 31200135)
文摘The construction of the first infectious clone JFH-1 speeds up the research on hepatitis C virus (HCV). However, Huh7 cell line was the only highly permissive cell line for HCV infection and only a few clones were fully permissive. In this study, two different fully permissive clones of Huh7 cells, Huh7.5.1 and Huh7-Lunet-CD81 (Lunet-CD81) cells were compared for their responses upon HCV infection. The virus replication level was found slightly higher in Huh7.5.1 cells than that in Lunet-CD81 cells. Viability of Huh7.5.1 cells but not of Lunet-CD81 cells was reduced significantly after HCV infection. Further analysis showed that the cell cycle of infected Huh7.5.1 cells was arrested at G1 phase. The G1/S transition was blocked by HCV infection in Huh7.5.1 cells as shown by the cell cycle synchronization analysis. Genes related to cell cycle regulation was modified by HCV infection and gene interaction analysis in GeneSpring GX in Direct Interactions mode highlighted 31 genes. In conclusion, the responses of those two cell lines were different upon HCV infection. HCV infection blocked G1/S transition and cell cycle progress, thus reduced the cell viability in Huh7.5.1 cells but not in Lunet-CD81 cells. Lunet-CD81 cells might be suitable for long term infection studies of HCV.
文摘This paper demonstrates that the susceptible-infected-removed (SIR) model applied to the early phase of an epidemic can be used to determine epidemic parameters reliably. As a case study, the SIR model is applied to the fatality data of the 2009 fall wave cycle of the A(H1N1) pandemic in 12 European countries. It is observed that the best estimates of the basic reproduction number R0 and the mean duration of the infection period l/r/ lie on a curve in the scatterplots, indicating the existence of a nearly-invariant quantity which corresponds to the duration of the epidemic. Spline interpolation applied to the early phase of the epidemic, an approximately 10-week period, together with a future control point in the stabilization region, is sufficient to estimate model parameters. The SIR model is run over a wide range of parameters and estimates of R0 in the range 1.2- 2.0 match the values in the literature. The duration of the infection period, 1/η is estimated to be in the range 2.0-7.0 days. Longer infection periods are tied to spatial characteristics of the spread of the epidemic.
文摘In this paper, we discuss the SIV epidemic model with impulsive vaccination and infection-age. Bifurcation theory and Lyapunov-Schmidt series expansion are used to show the existence of the positive periodic solutions under some conditions.