在高移动性场景中,利用正交时频空(Orthogonal Time Frequency Space,OTFS)调制实现通感一体化(Integrated Sensing and Communication,ISAC)技术具有显著优势。然而,OTFS-ISAC的波形设计及其信号处理极具挑战因而成为了悬而未决的难题...在高移动性场景中,利用正交时频空(Orthogonal Time Frequency Space,OTFS)调制实现通感一体化(Integrated Sensing and Communication,ISAC)技术具有显著优势。然而,OTFS-ISAC的波形设计及其信号处理极具挑战因而成为了悬而未决的难题。针对OTFS-ISAC感知接收处理时性能受限的问题,提出了基于最小均方误差(Minimum Mean Square Error,MMSE)和基于正交匹配追踪(Orthogonal Matching Pursuit,OMP)的感知信号处理算法。利用MMSE准则最小化均方误差进行感知,根据残差与原子相关性最大的准则迭代获得雷达感知信道的稀疏逼近元。仿真结果表明,相较于已有研究,所提方法不仅能准确感知目标,还获得了显著的感知性能增益,验证了所提方法的正确性与有效性。展开更多
文摘在高移动性场景中,利用正交时频空(Orthogonal Time Frequency Space,OTFS)调制实现通感一体化(Integrated Sensing and Communication,ISAC)技术具有显著优势。然而,OTFS-ISAC的波形设计及其信号处理极具挑战因而成为了悬而未决的难题。针对OTFS-ISAC感知接收处理时性能受限的问题,提出了基于最小均方误差(Minimum Mean Square Error,MMSE)和基于正交匹配追踪(Orthogonal Matching Pursuit,OMP)的感知信号处理算法。利用MMSE准则最小化均方误差进行感知,根据残差与原子相关性最大的准则迭代获得雷达感知信道的稀疏逼近元。仿真结果表明,相较于已有研究,所提方法不仅能准确感知目标,还获得了显著的感知性能增益,验证了所提方法的正确性与有效性。