期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
社会化网络环境下网络公开课用户使用行为研究 被引量:6
1
作者 钱瑛 《现代情报》 CSSCI 2014年第5期50-55,共6页
本文以经典的技术接受模型的理论框架为基础,整合社会化网络的基本特征,增加体现社会化网络特征的感知互动、感知愉悦和感知分享3个变量,用结构方程模型来构建用户对网络公开课的接受意愿概念模型。通过模型分析验证,研究了用户网络公... 本文以经典的技术接受模型的理论框架为基础,整合社会化网络的基本特征,增加体现社会化网络特征的感知互动、感知愉悦和感知分享3个变量,用结构方程模型来构建用户对网络公开课的接受意愿概念模型。通过模型分析验证,研究了用户网络公开课使用行为的影响因素,从而提出改进网络公开课利用效率的对策建议。 展开更多
关键词 结构方程模型 网络公开课 感知互动 感知愉悦 感知分享
下载PDF
Power Allocation for Sensing-Based Spectrum Sharing Cognitive Radio System with Primary Quantized Side Information
2
作者 Shuying Zhang Xiaohui Zhao 《China Communications》 SCIE CSCD 2016年第9期33-43,共11页
Spectrum access approach and power allocation scheme are important techniques in cognitive radio(CR) system,which not only affect communication performance of CR user(secondary user,SU) but also play decisive role for... Spectrum access approach and power allocation scheme are important techniques in cognitive radio(CR) system,which not only affect communication performance of CR user(secondary user,SU) but also play decisive role for protection of primary user(PU).In this study,we propose a power allocation scheme for SU based on the status sensing of PU in a single-input single-output(SISO) CR network.Instead of the conventional binary primary transmit power strategy,namely the sensed PU has only present or absent status,we consider a more practical scenario when PU transmits with multiple levels of power and quantized side information known by SU in advance as a primary quantized codebook.The secondary power allocation scheme to maximize the average throughput under the rate loss constraint(RLC) of PU is parameterized by the sensing results for PU,the primary quantized codebook and the channel state information(CSI) of SU.Furthermore,Differential Evolution(DE) algorithm is used to solve this non-convex power allocation problem.Simulation results show the performance and effectiveness of our proposed scheme under more practical communication conditions. 展开更多
关键词 cognitive radio power allocation multi-level spectrum sensing quantized side information differential evolution
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部