Flexible strain sensor devices were fabricated by depositing Pd nanoclusters on PET membranes patterned with interdigital electrodes. The sensors responded to the deformation of the PET membranes with the conductance ...Flexible strain sensor devices were fabricated by depositing Pd nanoclusters on PET membranes patterned with interdigital electrodes. The sensors responded to the deformation of the PET membranes with the conductance changes of the nanocluster films and were characterized by both high gauge factor and wide detection range. The response characteristics of the strain sensors were found to depend strongly on the nanocluster coverage, which was attributed to the percolative nature of the electron transport in the closely spaced nanocluster arrays. By controlling the nanocluster deposition process, a strain sensor composed of nanocluster arrays with a coverage close to the effective percolation threshold was fabricated. The sensor device showed a linear response with a stable gauge factor of 55 for the applied strains from the lower detection limit up to 0.3%. At higher applied strains, a gauge factor as high as 200 was shown. The nanocluster films also demonstrated the ability to response to large deformations up to 8% applied strain, with an extremely high gauge factor of 3500.展开更多
Because antipredator behaviours are costly, the threat-sensitive predator avoidance hypothesis predicts that individual animals should express predator-avoidance behaviour proportionally to the perceived threat posed ...Because antipredator behaviours are costly, the threat-sensitive predator avoidance hypothesis predicts that individual animals should express predator-avoidance behaviour proportionally to the perceived threat posed by the predator. Here, we experimentally tested this hypothesis by providing wild passerine birds supplemental food (on a raised feeding platform) at either 1 or 4 m from the edge of forest cover (potential refuge), in either the presence or absence of a nearby simulated predation threat (a sharp-shinned hawk Accipiter striatus model). Compared with the control treatment, we observed proportionally fewer bird visits to the food patch, and the birds took longer to re-emerge from forest refuge and return to feed at the food patch, after the hawk presentation than before it. The observed threat-sensitive latency-to-return response was stronger when the food patch was further away from the nearest refuge. Overall, our results are consistent with the predictions of the threat-sensitive predator avoidance hypothesis in that wild passerine birds (primarily black-capped chickadees Poecile atricapillus) exhibited more intense antipre- dator behavioural responses with increasing level of apparent threat. The birds were thus sensitive to their local perceived threat of predation and traded-off safety from predation (by refuging) and foraging gains in open habitat in a graded, threat-sensitive manner [Current Zoology 60 (6): 719-728, 2014].展开更多
基金supported by the National Natural Science Foundation of China(No.11627806)a Project funded by the Priority Academic Programme Development of Jiangsu Higher Education Institutions
文摘Flexible strain sensor devices were fabricated by depositing Pd nanoclusters on PET membranes patterned with interdigital electrodes. The sensors responded to the deformation of the PET membranes with the conductance changes of the nanocluster films and were characterized by both high gauge factor and wide detection range. The response characteristics of the strain sensors were found to depend strongly on the nanocluster coverage, which was attributed to the percolative nature of the electron transport in the closely spaced nanocluster arrays. By controlling the nanocluster deposition process, a strain sensor composed of nanocluster arrays with a coverage close to the effective percolation threshold was fabricated. The sensor device showed a linear response with a stable gauge factor of 55 for the applied strains from the lower detection limit up to 0.3%. At higher applied strains, a gauge factor as high as 200 was shown. The nanocluster films also demonstrated the ability to response to large deformations up to 8% applied strain, with an extremely high gauge factor of 3500.
文摘Because antipredator behaviours are costly, the threat-sensitive predator avoidance hypothesis predicts that individual animals should express predator-avoidance behaviour proportionally to the perceived threat posed by the predator. Here, we experimentally tested this hypothesis by providing wild passerine birds supplemental food (on a raised feeding platform) at either 1 or 4 m from the edge of forest cover (potential refuge), in either the presence or absence of a nearby simulated predation threat (a sharp-shinned hawk Accipiter striatus model). Compared with the control treatment, we observed proportionally fewer bird visits to the food patch, and the birds took longer to re-emerge from forest refuge and return to feed at the food patch, after the hawk presentation than before it. The observed threat-sensitive latency-to-return response was stronger when the food patch was further away from the nearest refuge. Overall, our results are consistent with the predictions of the threat-sensitive predator avoidance hypothesis in that wild passerine birds (primarily black-capped chickadees Poecile atricapillus) exhibited more intense antipre- dator behavioural responses with increasing level of apparent threat. The birds were thus sensitive to their local perceived threat of predation and traded-off safety from predation (by refuging) and foraging gains in open habitat in a graded, threat-sensitive manner [Current Zoology 60 (6): 719-728, 2014].