[Objective] The aim was to explore tobacco varieties which satisfy tobacco formula and is suitable to be grown in ecotopes simultaneously. [Method] Interior and exterior qualities of tobacco were compared and identifi...[Objective] The aim was to explore tobacco varieties which satisfy tobacco formula and is suitable to be grown in ecotopes simultaneously. [Method] Interior and exterior qualities of tobacco were compared and identified based on agronomic and economic characters of tobacco in fields. [Result] Yunshai No.1 was better in both agronomic and economic characters. Specifically, the fragrance was dominated by empyreumatique and aroma; the highly-qualified variety is fragrant and sweet, with little irritation, which gives the tobacco smoke a light, mild flavor. As for Virgini- a934, economic characters were better, but agronomic characters were just ordinary. Similar to Yunshai No.l, dominated by empyreumatique and aroma, the variety was with distinctive resin and herbaceous fragrance. What's more, it tasted good with high quality and usability. Cunsanpi was ordinary in agronomic characters, and poor in economic characters, with coordinated quality and chemical composition. It is fra- grant and the smoke is clean. However, the quality was not so high and it tasted not so good. Tengruan No.2 was good in agronomic characters, but poor in eco- nomic characters, which gives delicate fragrance, but not clean enough. Waiweiba and Mijie Qinggeng neither taste well nor smell sweet, performing ordinary in agro- nomic and economic characters. Hence, the two varieties seem bad in quality and ranks poorly. [Conclusion] In terms of sensory quality, the varieties from high to low were Yunshai No.1, Virginia 934, Cunsanpi, Tengruan No.2, Waiweiba and Mijie Qinggeng.展开更多
Most evaluation of the consistency of multisensor images have focused on Normalized Difference Vegetation Index (NDVI) products for natural landscapes, often neglecting less vegetated urban landscapes. This gap has ...Most evaluation of the consistency of multisensor images have focused on Normalized Difference Vegetation Index (NDVI) products for natural landscapes, often neglecting less vegetated urban landscapes. This gap has been filled through quantifying and evaluating spatial heterogeneity of urban and natural landscapes from QuickBird, Satellite pour l'observation de la Terre (SPOT), Ad- vanced Spacebome Thermal Emission and Reflection Radiometer (ASTER) and Landsat Thematic Mapper (TM) images with variogram analysis. Instead of a logarithmic relationship with pixel size observed in the corresponding aggregated images, the spatial variability decayed and the spatial structures decomposed more slowly and complexly with spatial resolution for real multisensor im- ages. As the spatial resolution increased, the proportion of spatial variability of the smaller spatial structure decreased quickly and only a larger spatial structure was observed at very coarse scales. Compared with visible band, greater spatial variability was observed in near infrared band for both densely and less densely vegetated landscapes. The influence of image size on spatial heterogeneity was highly dependent on whether the empirical sernivariogram reached its sill within the original image size. When the empirical semivariogram did not reach its sill at the original observation scale, spatial variability and mean characteristic length scale would increase with image size; otherwise they might decrease. This study could provide new insights into the knowledge of spatial heterogeneity in real multisen- sor images with consideration of their nominal spatial resolution, image size and spectral bands.展开更多
By taking Daan city in Jilin Province as a research object and by using TM image in 1989 and ETM + image in 2001 from American LANDSAT satellite,all kinds of maps and documentation,information of grassland,saline-alka...By taking Daan city in Jilin Province as a research object and by using TM image in 1989 and ETM + image in 2001 from American LANDSAT satellite,all kinds of maps and documentation,information of grassland,saline-alkalized land,cropland,water area and forestland is extracted by man-computer interactive interpretation method with ArcView and ArcInfo GIS software, and statistics data is acquired. On the basis of this the changing trend of land use types in the next ten years is forecasted and analyzed with Markov model. The results indicate that the problem of grassland degradation in the study area is quite serious.展开更多
We present a study on the retrieval sensitivity of the column-averaged dry-air mole fraction of CO2(XCO2) for the Chinese carbon dioxide observation satellite(TanSat) with a full physical forward model and the optimal...We present a study on the retrieval sensitivity of the column-averaged dry-air mole fraction of CO2(XCO2) for the Chinese carbon dioxide observation satellite(TanSat) with a full physical forward model and the optimal estimation technique. The forward model is based on the vector linearized discrete ordinate radiative transfer model(VLIDORT) and considers surface reflectance, gas absorption, and the scattering of air molecules, aerosol particles, and cloud particles. XCO2 retrieval errors from synthetic TanSat measurements show solar zenith angle(SZA), albedo dependence with values varying from 0.3 to 1 ppm for bright land surface in nadir mode and 2 to 8 ppm for dark surfaces like snow. The use of glint mode over dark oceans significantly improves the CO2 information retrieved. The aerosol type and profile are more important than the aerosol optical depth, and underestimation of aerosol plume height will introduce a bias of 1.5 ppm in XCO2. The systematic errors due to radiometric calibration are also estimated using a forward model simulation approach.展开更多
Ir-based dectrocatalysts have been system- atically studied for a variety of applications, among which the electrocatalysis for oxygen evolution reaction (OER) is one of the most prominent. The investigation on surf...Ir-based dectrocatalysts have been system- atically studied for a variety of applications, among which the electrocatalysis for oxygen evolution reaction (OER) is one of the most prominent. The investigation on surface-micro- structure-sensitive catalytic activity in different pH media is of great significance for developing efficient electrocatalysts and corresponding mechanism research. Herein, shape-tunable Ir- Pd alloy nanocrystals, including nano-hollow-spheres (NHSs), nanowires (NWs), and nanotetrahedrons (NTs), are synthe- sized via a facile one-pot solvothermal method, Electro- chemical studies show that the OER activity of the Ir-Pd alloy nanocatalysts exhibits surface-microstructure-sensitive en- hancement in acidic and alkaline media. Ir-Pd NWs and NTs show more than five times higher mass activity than com- mercial Ir/C catalyst at an overpotential of 0.25 V in acidic and alkaline media. Post-XPS analyses reveal that surface Ir(VI) oxide generated at surface defective sites of Ir-Pd nanocata- lysts is a possible key intermediate for OER. In acidic medium, the specific activity of Ir-Pd nanocatalysts has a positive cor- relation with the surface roughness of NWs 〉 NHSs 〉 NTs. However, the strong dissociation of surface Ir(VI) species (IrO42-) at surface defective sites is a possible obstacle for the formation of Ir(VI) oxide, which reverses the activity sequence for OER in alkaline medium.展开更多
Reflectance measurements of both the visible and infrared bands of passive remote sensing sensors are widely used to retrieve aerosol optical depth(AOD) information. This is performed commonly for data obtained over b...Reflectance measurements of both the visible and infrared bands of passive remote sensing sensors are widely used to retrieve aerosol optical depth(AOD) information. This is performed commonly for data obtained over both ocean and land, and these measurements allow for the off line development of a lookup table using radiative transfer models. Owing to molecular and aerosol effects, the reflected light received by the sensor is usually highly polarized. The linear polarization effect may be up to 100%, and the polarization factor of a sensor optical system will change the total intensity as well as the polarization status of the signal reaching the detector. The detector response will be different when the incident light polarization status changes, even if the total intensity remains constant. However, if the polarization calibration is neglected, it will cause obvious errors in the aerosol data retrieval. This is especially true for aerosol optical depth retrieval over an ocean. This measurement relies directly on the reflectance output of the sensor. Cases involving land surfaces are not discussed herein because the inhomogeneous properties conceal the error due to polarization. Taking the 550 and 860 nm bands as examples, the difference between the real top-of-atmosphere(TOA) reflectance and the reflectance reaching the detector is calculated using three different sensor polarization standards according to the Sea-viewing Wide Field-of-view Sensor(Sea Wi FS) and Moderate Resolution Imaging Spectroradiometer(MODIS) standards. The differences in AOD retrieval are also demonstrated using the lookup table developed previously from a vector radiative transfer code. The results reveal that under a normal situation in which the AOD is 0.15, the maximum AOD retrieval error could reach 0.04 in 550 nm but only 0.02 in 860 nm for the dust aerosol model. For the soot aerosol model, the maximum AOD retrieval error is 0.1 in 550 nm and 0.12 in 860 nm, indicating that the lack of polarization calibration will lead to large errors in aerosol retrieval over an ocean.展开更多
基金Supported by China Tobacco Yunnan Industrial Co.,Ltd(2010YL02)~~
文摘[Objective] The aim was to explore tobacco varieties which satisfy tobacco formula and is suitable to be grown in ecotopes simultaneously. [Method] Interior and exterior qualities of tobacco were compared and identified based on agronomic and economic characters of tobacco in fields. [Result] Yunshai No.1 was better in both agronomic and economic characters. Specifically, the fragrance was dominated by empyreumatique and aroma; the highly-qualified variety is fragrant and sweet, with little irritation, which gives the tobacco smoke a light, mild flavor. As for Virgini- a934, economic characters were better, but agronomic characters were just ordinary. Similar to Yunshai No.l, dominated by empyreumatique and aroma, the variety was with distinctive resin and herbaceous fragrance. What's more, it tasted good with high quality and usability. Cunsanpi was ordinary in agronomic characters, and poor in economic characters, with coordinated quality and chemical composition. It is fra- grant and the smoke is clean. However, the quality was not so high and it tasted not so good. Tengruan No.2 was good in agronomic characters, but poor in eco- nomic characters, which gives delicate fragrance, but not clean enough. Waiweiba and Mijie Qinggeng neither taste well nor smell sweet, performing ordinary in agro- nomic and economic characters. Hence, the two varieties seem bad in quality and ranks poorly. [Conclusion] In terms of sensory quality, the varieties from high to low were Yunshai No.1, Virginia 934, Cunsanpi, Tengruan No.2, Waiweiba and Mijie Qinggeng.
基金Under the auspices of National Natural Science Foundation of China(No.41071267,41001254)Natural Science Foundation of Fujian Province(No.2012I0005,2012J01167)
文摘Most evaluation of the consistency of multisensor images have focused on Normalized Difference Vegetation Index (NDVI) products for natural landscapes, often neglecting less vegetated urban landscapes. This gap has been filled through quantifying and evaluating spatial heterogeneity of urban and natural landscapes from QuickBird, Satellite pour l'observation de la Terre (SPOT), Ad- vanced Spacebome Thermal Emission and Reflection Radiometer (ASTER) and Landsat Thematic Mapper (TM) images with variogram analysis. Instead of a logarithmic relationship with pixel size observed in the corresponding aggregated images, the spatial variability decayed and the spatial structures decomposed more slowly and complexly with spatial resolution for real multisensor im- ages. As the spatial resolution increased, the proportion of spatial variability of the smaller spatial structure decreased quickly and only a larger spatial structure was observed at very coarse scales. Compared with visible band, greater spatial variability was observed in near infrared band for both densely and less densely vegetated landscapes. The influence of image size on spatial heterogeneity was highly dependent on whether the empirical sernivariogram reached its sill within the original image size. When the empirical semivariogram did not reach its sill at the original observation scale, spatial variability and mean characteristic length scale would increase with image size; otherwise they might decrease. This study could provide new insights into the knowledge of spatial heterogeneity in real multisen- sor images with consideration of their nominal spatial resolution, image size and spectral bands.
文摘By taking Daan city in Jilin Province as a research object and by using TM image in 1989 and ETM + image in 2001 from American LANDSAT satellite,all kinds of maps and documentation,information of grassland,saline-alkalized land,cropland,water area and forestland is extracted by man-computer interactive interpretation method with ArcView and ArcInfo GIS software, and statistics data is acquired. On the basis of this the changing trend of land use types in the next ten years is forecasted and analyzed with Markov model. The results indicate that the problem of grassland degradation in the study area is quite serious.
基金supported by the Strategic Priority Research Program- Climate Change: Carbon Budget and Relevant Issues (Grant No. XDA05040200)the National High-tech Research and Development Program of China (Grant No. 2011AA12A104)
文摘We present a study on the retrieval sensitivity of the column-averaged dry-air mole fraction of CO2(XCO2) for the Chinese carbon dioxide observation satellite(TanSat) with a full physical forward model and the optimal estimation technique. The forward model is based on the vector linearized discrete ordinate radiative transfer model(VLIDORT) and considers surface reflectance, gas absorption, and the scattering of air molecules, aerosol particles, and cloud particles. XCO2 retrieval errors from synthetic TanSat measurements show solar zenith angle(SZA), albedo dependence with values varying from 0.3 to 1 ppm for bright land surface in nadir mode and 2 to 8 ppm for dark surfaces like snow. The use of glint mode over dark oceans significantly improves the CO2 information retrieved. The aerosol type and profile are more important than the aerosol optical depth, and underestimation of aerosol plume height will introduce a bias of 1.5 ppm in XCO2. The systematic errors due to radiometric calibration are also estimated using a forward model simulation approach.
基金supported by the National Natural Science Foundation of China (21573005, 21771009 and 21621061)the National Key Research and Development Program (2016YFB0701100)Beijing Natural Science Foundation (2162019)
文摘Ir-based dectrocatalysts have been system- atically studied for a variety of applications, among which the electrocatalysis for oxygen evolution reaction (OER) is one of the most prominent. The investigation on surface-micro- structure-sensitive catalytic activity in different pH media is of great significance for developing efficient electrocatalysts and corresponding mechanism research. Herein, shape-tunable Ir- Pd alloy nanocrystals, including nano-hollow-spheres (NHSs), nanowires (NWs), and nanotetrahedrons (NTs), are synthe- sized via a facile one-pot solvothermal method, Electro- chemical studies show that the OER activity of the Ir-Pd alloy nanocatalysts exhibits surface-microstructure-sensitive en- hancement in acidic and alkaline media. Ir-Pd NWs and NTs show more than five times higher mass activity than com- mercial Ir/C catalyst at an overpotential of 0.25 V in acidic and alkaline media. Post-XPS analyses reveal that surface Ir(VI) oxide generated at surface defective sites of Ir-Pd nanocata- lysts is a possible key intermediate for OER. In acidic medium, the specific activity of Ir-Pd nanocatalysts has a positive cor- relation with the surface roughness of NWs 〉 NHSs 〉 NTs. However, the strong dissociation of surface Ir(VI) species (IrO42-) at surface defective sites is a possible obstacle for the formation of Ir(VI) oxide, which reverses the activity sequence for OER in alkaline medium.
基金supported by the Risk Reduction Programs of the Ministry of Civil Affairs of the People’s Republic of China(Grant No.TC088641)
文摘Reflectance measurements of both the visible and infrared bands of passive remote sensing sensors are widely used to retrieve aerosol optical depth(AOD) information. This is performed commonly for data obtained over both ocean and land, and these measurements allow for the off line development of a lookup table using radiative transfer models. Owing to molecular and aerosol effects, the reflected light received by the sensor is usually highly polarized. The linear polarization effect may be up to 100%, and the polarization factor of a sensor optical system will change the total intensity as well as the polarization status of the signal reaching the detector. The detector response will be different when the incident light polarization status changes, even if the total intensity remains constant. However, if the polarization calibration is neglected, it will cause obvious errors in the aerosol data retrieval. This is especially true for aerosol optical depth retrieval over an ocean. This measurement relies directly on the reflectance output of the sensor. Cases involving land surfaces are not discussed herein because the inhomogeneous properties conceal the error due to polarization. Taking the 550 and 860 nm bands as examples, the difference between the real top-of-atmosphere(TOA) reflectance and the reflectance reaching the detector is calculated using three different sensor polarization standards according to the Sea-viewing Wide Field-of-view Sensor(Sea Wi FS) and Moderate Resolution Imaging Spectroradiometer(MODIS) standards. The differences in AOD retrieval are also demonstrated using the lookup table developed previously from a vector radiative transfer code. The results reveal that under a normal situation in which the AOD is 0.15, the maximum AOD retrieval error could reach 0.04 in 550 nm but only 0.02 in 860 nm for the dust aerosol model. For the soot aerosol model, the maximum AOD retrieval error is 0.1 in 550 nm and 0.12 in 860 nm, indicating that the lack of polarization calibration will lead to large errors in aerosol retrieval over an ocean.