Atmospheric CO2 can signal the presence of food, predators or environmental stress and trigger stereotypical behaviors in both vertebrates and invertebrates. Recent studies have shown that the necklace olfactory syste...Atmospheric CO2 can signal the presence of food, predators or environmental stress and trigger stereotypical behaviors in both vertebrates and invertebrates. Recent studies have shown that the necklace olfactory system in mice sensitively detects CO2 in the air. Olfactory CO2 neurons are believed to rely on cyclic gnanosine monophosphate (cGMP) as the key second messenger; however, the specific ion channel underlying CO2 responses remains unclear. Here we show that CO2-evoked neuronal and behavioral responses require cyclic nucleotide-gated (CNG) channels consisting of the CNGA3 subunit. Through Ca2+-imaging, we found that CO2-triggered Ca2+ influx was abolished in necklace olfactory sensory neurons (OSNs) of CNGA3-knockout mice. Olfactory detection tests using a Go/No-go paradigm showed that these knockout mice failed to detect 0.5% CO2. Thus, sensitive detection of atmospheric CO2 depends on the function of CNG channels consisting of the CNGA3 subunit in necklace OSNs. These data support the important role of the necklace olfactory system in CO2 sensing and extend our understanding of the signal transduction pathway mediating CO2 detection in mammals [Current Zoology 56 (6): 793-799, 2010].展开更多
Objective To perform the modulation of an assay system for the sensory integration of 2 sensory stimuli that inhibit each other.Methods The assay system for assessing the integrative response to 2 reciprocally-inhibit...Objective To perform the modulation of an assay system for the sensory integration of 2 sensory stimuli that inhibit each other.Methods The assay system for assessing the integrative response to 2 reciprocally-inhibitory sensory stimuli was modulated by changing the metal ion barrier.Moreover,the hen-1,ttx-3 and casy-1 mutants having known defects in integrative response were used to evaluate the modulated assay systems.Based on the examined assay systems,new genes possibly involved in the sensory integration control were identified.Results In the presence of different metal ion barriers and diacetyl,locomotion behaviors,basic movements,pan-neuronal,cholinergic and GABAergic neuronal GFP expressions,neuronal development,structures of sensory neurons and interneurons,and stress response of nematodes in different regions of examined assay systems were normal,and chemotaxis toward different concentrations of diacetyl and avoidance of different concentrations of metal ions were inhibited.In the first group,most of the nematodes moved to diacetyl by crossing the barrier of Fe2+,Zn2+,or Mn2+.In the second group,almost half of the nematodes moved to diacetyl by crossing the barrier of Ag+,Cu2+,Cr2+,or Cd2+.In the third group,only a small number of nematodes moved to diacetyl by crossing the barrier of Pb2+ or Hg2+.Moreover,when nematodes encountered different metal ion barriers during migration toward diacetyl,the percentage of nematodes moving back and then turning and that of nematodes moving straight to diacetyl were very different.With the aid of examined assay systems,it was found that mutations of fsn-1 that encodes a F-box protein,and its target scd-2 that encodes a receptor tyrosine kinase,caused severe defects in integrative response,and the sensory integration defects of fsn-1 mutants were obviously inhibited by scd-2 mutation.Conclusion Based on the nematode behaviors in examined assay systems,3 groups of assay systems were obtained.The first group may be helpful in evaluating or identifying the very subtle deficits in sensory integration,and the third group may be useful for the final confirmation of sensory integration defects of mutants identified in the first or the second group of assay systems.Furthermore,the important association of sensory integration regulation with stabilization or destabilization of synaptic differentiation may exist in C.elegans.展开更多
Many aposematic insect species advertise their toxicity to potential predators using olfactory and auditory signals, in addition to visual signals, to produce a multimodal warning display. The olfactory signals in the...Many aposematic insect species advertise their toxicity to potential predators using olfactory and auditory signals, in addition to visual signals, to produce a multimodal warning display. The olfactory signals in these displays may have interesting effects, such as eliciting innate avoidance against novel colored prey, or improving learning and memory of defended prey. However, little is known about the effects of such ancillary signals when they are auditory rather than olfactory. The few studies that have investigated this question have provided conflicting results. The current study sought to clarify and extend understanding of the effects of prey auditory signals on avian predator responses. The domestic chick Gallus gallus domesticus was used as a model avian predator to examine how the defensive buzzing sound of a bumblebee Bombus terrestris affected the chick's innate avoidance behavior, and the learning and memory of prey avoidance. The results demonstrate that the buzzing sound had no effect on the predator's responses to unpalatable aposematically colored crumbs, suggesting that the agitated buzzing of B. terrestris may provide no additional protection from avian predators .展开更多
Sensory drive, the concept that sensory systems primarily evolve under the influence of environmen tal features and that animal signals are evolutionarily shaped and tuned by these previously existing sensory systems,...Sensory drive, the concept that sensory systems primarily evolve under the influence of environmen tal features and that animal signals are evolutionarily shaped and tuned by these previously existing sensory systems, has been thoroughly studied regarding visual signals across many animals. Much of this work has focused on spectral aspects of vision and signals. Here, I review work on polarized light signals of animals and relate these to what is known of polarization visual systems, polarized light aspects of visual scenes, and polarizationrelated behavior (e.g., orientation, habitatfinding, contrast enhancement). Other than the broad patterns of scattered polarized light in the sky, most po larization in both terrestrial and aquatic environments results from either reflection or scattering in the horizontal plane. With overhead illumination, horizontal features such as the surfaces of many leaves or of air: water interfaces reflect horizontal polarization, and water scatters horizontally polar ized light under most conditions. Several animal species have been demonstrated to use horizontally polarized light fields or features in critical aspects of their biology. Significantly, most biological sig nals are also horizontally polarized. Here, I present relevant polarizationrelated behavior and discuss the hypothesis that sensory drive has evolutionarily influenced the structure of polarization signals. The paper also considers the evolutionary origin of circular polarization vision and circularly polar ized signals. It appears that this class of signals did not evolve under the influence of sensory drive. The study of signals based on polarized light is becoming a mature field of research.展开更多
Several of the most celebrated examples of visual mimicry, like mimetic eggs laid by avian brood parasites and pala-table insects mimicking distasteful ones, involve signals directed at the eyes of birds. Despite this...Several of the most celebrated examples of visual mimicry, like mimetic eggs laid by avian brood parasites and pala-table insects mimicking distasteful ones, involve signals directed at the eyes of birds. Despite this, studies of mimicry from the avian visual perspective have been rare, particularly with regard to defensive mimicry and masquerade. Defensive visual mimicry, which includes Batesian and Mtillerian mimicry, occurs when organisms share a visual signal that functions to deter predators. Masquerade occurs when an organism mimics an inedible or uninteresting object, such as a leaf, stick, or pebble. In this paper, I present five case studies covering diverse examples of defensive mimicry and masquerade as seen by birds. The best-known cases of defensive visual mimicry typically come from insect prey, but birds themselves can exhibit defensive visual mimicry in an at- tempt to escape mobbing or dissuade avian predators. Using examples of defensive visual mimicry by both insects and birds, I show how quantitative models of avian color, luminance, and pattern vision can be used to enhance our understanding of mimicry in many systems and produce new hypotheses about the evolution and diversity of signals. Overall, I investigate examples of Batesian mimicry (1 and 2), Miillerian mimicry (3 and 4), and masquerade (5) as follows: 1) Polymorphic mimicry in African mocker swallowtail butterflies; 2) Cuckoos mimicking sparrowhawks; 3) Mimicry rings in Neotropical butterflies; 4) Plumage mimicry in toxic pitohuis; and 5) Dead leaf-mimicking butterflies and mantids.展开更多
Undoubtedly, the sensory organs of biological systems have been evolved to accurately detect and locate the external stimuli, even if they are very weak. However, the mechanism underlying this ability is still not ful...Undoubtedly, the sensory organs of biological systems have been evolved to accurately detect and locate the external stimuli, even if they are very weak. However, the mechanism underlying this ability is still not fully understood. Previously, it had been shown that stochastic resonance may be a good candidate to explain this ability, by which the response of a system to an external signal is amplified by the presence of noise. Recently, it is pointed out that the initial phase diversity in external signals can be also served as a simple and feasible mechanism for weak signal detection or amplification in excitable neurons. We here make a brief review on this progress. We will show that there are two kinds of effects of initial phase diversity: one is the phase disorder, i.e., the initial phases are different and static, and the other is the phase noise, i.e., the initial phases are time-varying like noise. Both cases show that initial phase diversity in subthreshold periodic signals can indeed play a constructive role in the emergence of sustained spiking activity. As initial phase diversity can mimic different arrival times from source signal to sensory organs, these findings may provide a cue for understanding the hunting behaviors of some biological systems.展开更多
基金supported by the China Ministry of Science and Technology 973 (2010CB833902)863 grants (2008AA022902)
文摘Atmospheric CO2 can signal the presence of food, predators or environmental stress and trigger stereotypical behaviors in both vertebrates and invertebrates. Recent studies have shown that the necklace olfactory system in mice sensitively detects CO2 in the air. Olfactory CO2 neurons are believed to rely on cyclic gnanosine monophosphate (cGMP) as the key second messenger; however, the specific ion channel underlying CO2 responses remains unclear. Here we show that CO2-evoked neuronal and behavioral responses require cyclic nucleotide-gated (CNG) channels consisting of the CNGA3 subunit. Through Ca2+-imaging, we found that CO2-triggered Ca2+ influx was abolished in necklace olfactory sensory neurons (OSNs) of CNGA3-knockout mice. Olfactory detection tests using a Go/No-go paradigm showed that these knockout mice failed to detect 0.5% CO2. Thus, sensitive detection of atmospheric CO2 depends on the function of CNG channels consisting of the CNGA3 subunit in necklace OSNs. These data support the important role of the necklace olfactory system in CO2 sensing and extend our understanding of the signal transduction pathway mediating CO2 detection in mammals [Current Zoology 56 (6): 793-799, 2010].
基金supported by the National Natural Science Foundation of China (No. 30870810)National Basic Research Program of China (No. 2011CB933404)
文摘Objective To perform the modulation of an assay system for the sensory integration of 2 sensory stimuli that inhibit each other.Methods The assay system for assessing the integrative response to 2 reciprocally-inhibitory sensory stimuli was modulated by changing the metal ion barrier.Moreover,the hen-1,ttx-3 and casy-1 mutants having known defects in integrative response were used to evaluate the modulated assay systems.Based on the examined assay systems,new genes possibly involved in the sensory integration control were identified.Results In the presence of different metal ion barriers and diacetyl,locomotion behaviors,basic movements,pan-neuronal,cholinergic and GABAergic neuronal GFP expressions,neuronal development,structures of sensory neurons and interneurons,and stress response of nematodes in different regions of examined assay systems were normal,and chemotaxis toward different concentrations of diacetyl and avoidance of different concentrations of metal ions were inhibited.In the first group,most of the nematodes moved to diacetyl by crossing the barrier of Fe2+,Zn2+,or Mn2+.In the second group,almost half of the nematodes moved to diacetyl by crossing the barrier of Ag+,Cu2+,Cr2+,or Cd2+.In the third group,only a small number of nematodes moved to diacetyl by crossing the barrier of Pb2+ or Hg2+.Moreover,when nematodes encountered different metal ion barriers during migration toward diacetyl,the percentage of nematodes moving back and then turning and that of nematodes moving straight to diacetyl were very different.With the aid of examined assay systems,it was found that mutations of fsn-1 that encodes a F-box protein,and its target scd-2 that encodes a receptor tyrosine kinase,caused severe defects in integrative response,and the sensory integration defects of fsn-1 mutants were obviously inhibited by scd-2 mutation.Conclusion Based on the nematode behaviors in examined assay systems,3 groups of assay systems were obtained.The first group may be helpful in evaluating or identifying the very subtle deficits in sensory integration,and the third group may be useful for the final confirmation of sensory integration defects of mutants identified in the first or the second group of assay systems.Furthermore,the important association of sensory integration regulation with stabilization or destabilization of synaptic differentiation may exist in C.elegans.
文摘Many aposematic insect species advertise their toxicity to potential predators using olfactory and auditory signals, in addition to visual signals, to produce a multimodal warning display. The olfactory signals in these displays may have interesting effects, such as eliciting innate avoidance against novel colored prey, or improving learning and memory of defended prey. However, little is known about the effects of such ancillary signals when they are auditory rather than olfactory. The few studies that have investigated this question have provided conflicting results. The current study sought to clarify and extend understanding of the effects of prey auditory signals on avian predator responses. The domestic chick Gallus gallus domesticus was used as a model avian predator to examine how the defensive buzzing sound of a bumblebee Bombus terrestris affected the chick's innate avoidance behavior, and the learning and memory of prey avoidance. The results demonstrate that the buzzing sound had no effect on the predator's responses to unpalatable aposematically colored crumbs, suggesting that the agitated buzzing of B. terrestris may provide no additional protection from avian predators .
文摘Sensory drive, the concept that sensory systems primarily evolve under the influence of environmen tal features and that animal signals are evolutionarily shaped and tuned by these previously existing sensory systems, has been thoroughly studied regarding visual signals across many animals. Much of this work has focused on spectral aspects of vision and signals. Here, I review work on polarized light signals of animals and relate these to what is known of polarization visual systems, polarized light aspects of visual scenes, and polarizationrelated behavior (e.g., orientation, habitatfinding, contrast enhancement). Other than the broad patterns of scattered polarized light in the sky, most po larization in both terrestrial and aquatic environments results from either reflection or scattering in the horizontal plane. With overhead illumination, horizontal features such as the surfaces of many leaves or of air: water interfaces reflect horizontal polarization, and water scatters horizontally polar ized light under most conditions. Several animal species have been demonstrated to use horizontally polarized light fields or features in critical aspects of their biology. Significantly, most biological sig nals are also horizontally polarized. Here, I present relevant polarizationrelated behavior and discuss the hypothesis that sensory drive has evolutionarily influenced the structure of polarization signals. The paper also considers the evolutionary origin of circular polarization vision and circularly polar ized signals. It appears that this class of signals did not evolve under the influence of sensory drive. The study of signals based on polarized light is becoming a mature field of research.
文摘Several of the most celebrated examples of visual mimicry, like mimetic eggs laid by avian brood parasites and pala-table insects mimicking distasteful ones, involve signals directed at the eyes of birds. Despite this, studies of mimicry from the avian visual perspective have been rare, particularly with regard to defensive mimicry and masquerade. Defensive visual mimicry, which includes Batesian and Mtillerian mimicry, occurs when organisms share a visual signal that functions to deter predators. Masquerade occurs when an organism mimics an inedible or uninteresting object, such as a leaf, stick, or pebble. In this paper, I present five case studies covering diverse examples of defensive mimicry and masquerade as seen by birds. The best-known cases of defensive visual mimicry typically come from insect prey, but birds themselves can exhibit defensive visual mimicry in an at- tempt to escape mobbing or dissuade avian predators. Using examples of defensive visual mimicry by both insects and birds, I show how quantitative models of avian color, luminance, and pattern vision can be used to enhance our understanding of mimicry in many systems and produce new hypotheses about the evolution and diversity of signals. Overall, I investigate examples of Batesian mimicry (1 and 2), Miillerian mimicry (3 and 4), and masquerade (5) as follows: 1) Polymorphic mimicry in African mocker swallowtail butterflies; 2) Cuckoos mimicking sparrowhawks; 3) Mimicry rings in Neotropical butterflies; 4) Plumage mimicry in toxic pitohuis; and 5) Dead leaf-mimicking butterflies and mantids.
基金supported by the National Natural Science Foundation of China(Grant No.11305078)
文摘Undoubtedly, the sensory organs of biological systems have been evolved to accurately detect and locate the external stimuli, even if they are very weak. However, the mechanism underlying this ability is still not fully understood. Previously, it had been shown that stochastic resonance may be a good candidate to explain this ability, by which the response of a system to an external signal is amplified by the presence of noise. Recently, it is pointed out that the initial phase diversity in external signals can be also served as a simple and feasible mechanism for weak signal detection or amplification in excitable neurons. We here make a brief review on this progress. We will show that there are two kinds of effects of initial phase diversity: one is the phase disorder, i.e., the initial phases are different and static, and the other is the phase noise, i.e., the initial phases are time-varying like noise. Both cases show that initial phase diversity in subthreshold periodic signals can indeed play a constructive role in the emergence of sustained spiking activity. As initial phase diversity can mimic different arrival times from source signal to sensory organs, these findings may provide a cue for understanding the hunting behaviors of some biological systems.