Photovoltaic (PV) power generation is an emerging energy industry that is developing rapidly. A number of PV power plants have been established in the desert and Gobi areas in northwest China in recent years. Is the...Photovoltaic (PV) power generation is an emerging energy industry that is developing rapidly. A number of PV power plants have been established in the desert and Gobi areas in northwest China in recent years. Is there any ecological significance to the establishment of PV power plants? If yes, what is it? This paper tries to find the answer by analyzing meteorological data from the Hexi Corridor as well as the observational data of light and vegetation in the Minqin desert area. The results show that the solar energy converted from 1 m2 of PV panels is equivalent to the solar energy that is utilized by 260.75 m2 of desert plants in the desert area. In China, there is vast area of desert and Gobi, with frequent dust storms and aeolian sand, as well as rich sunlight resources. Therefore, to develop the PV industry in the desert and Gobi regions will not only create considerable economic benefits, but will also be of great ecological significance. On the one hand, PV can effectively regulate thermodynamic equilibrium on the surface, helping to prevent sandstorms and reduce aeolian sand. The development of the PV industry is a win-win that generates economic returns and provides ecological protection by combating desertification. On the other hand, the PV industry can be developed without taking up arable land or other types of land. There are frequently high winds in the desert and Gobi region. PV power plants, together with wind power generation, are useful to transform and consume the power source that creates duststorms and aeolian sandflow in the desert and Gobi areas. This results in fewer sandstorms and reduced aeolian sandflow.展开更多
Utilizing experimental data of the atmospheric surface layer in the Gobi Oasis of Jinta in a comparative study, we demonstrate that under the condition of unstable stratification, the normalization variances of temper...Utilizing experimental data of the atmospheric surface layer in the Gobi Oasis of Jinta in a comparative study, we demonstrate that under the condition of unstable stratification, the normalization variances of temperature in the oasis and Gobi Desert meetφs (z∧)= φθ(Z/∧) =αθ(-Z/ ∧)-1/3 while normalization variances of both humidity and CO2 in the oasis meet φ(Z/∧)= αs (1 - βs z /∧)-1/3 ; the normalization variance of temperature in the oasis is large due to disturbance by advection, whereas variance of CO2 in the Gobi Desert has certain degree of deviation relative to Monin-Obukhov (M-O) scaling, and humidity variance completely deviates from variance M-O scaling. The above result indicates that under the condition of advection, hu-midity variance meets the relation δ2 sm=D2 δ2SA + δ2SB and it is determined by relative magnitude of scalar variance of ad- midity variance meets the relation δsm = D2δsA + δsB vection transport. Our study reveals that, if the scalar variance of humidity or CO2 transported by advection is much larger than local scalar variance, observation value of scalar variance will deviate from M-O scaling; when scalar variance of advection transport is close to or less than local scalar variance, the observation value of scalar variance approximately meets M-O scal- ing.展开更多
基金supported by the Pre-phase Project of the State 973 Program(2014CB460611)National Natural Science Fund Project.(41261102)
文摘Photovoltaic (PV) power generation is an emerging energy industry that is developing rapidly. A number of PV power plants have been established in the desert and Gobi areas in northwest China in recent years. Is there any ecological significance to the establishment of PV power plants? If yes, what is it? This paper tries to find the answer by analyzing meteorological data from the Hexi Corridor as well as the observational data of light and vegetation in the Minqin desert area. The results show that the solar energy converted from 1 m2 of PV panels is equivalent to the solar energy that is utilized by 260.75 m2 of desert plants in the desert area. In China, there is vast area of desert and Gobi, with frequent dust storms and aeolian sand, as well as rich sunlight resources. Therefore, to develop the PV industry in the desert and Gobi regions will not only create considerable economic benefits, but will also be of great ecological significance. On the one hand, PV can effectively regulate thermodynamic equilibrium on the surface, helping to prevent sandstorms and reduce aeolian sand. The development of the PV industry is a win-win that generates economic returns and provides ecological protection by combating desertification. On the other hand, the PV industry can be developed without taking up arable land or other types of land. There are frequently high winds in the desert and Gobi region. PV power plants, together with wind power generation, are useful to transform and consume the power source that creates duststorms and aeolian sandflow in the desert and Gobi areas. This results in fewer sandstorms and reduced aeolian sandflow.
基金supported by the National Basic Research Program of China (Grant No.2010CB951701-2)the National Natural Science Foundation of China (Grant Nos. 91025011, 41130961)the Pingliang Station of Lightning and Hail Research, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences
文摘Utilizing experimental data of the atmospheric surface layer in the Gobi Oasis of Jinta in a comparative study, we demonstrate that under the condition of unstable stratification, the normalization variances of temperature in the oasis and Gobi Desert meetφs (z∧)= φθ(Z/∧) =αθ(-Z/ ∧)-1/3 while normalization variances of both humidity and CO2 in the oasis meet φ(Z/∧)= αs (1 - βs z /∧)-1/3 ; the normalization variance of temperature in the oasis is large due to disturbance by advection, whereas variance of CO2 in the Gobi Desert has certain degree of deviation relative to Monin-Obukhov (M-O) scaling, and humidity variance completely deviates from variance M-O scaling. The above result indicates that under the condition of advection, hu-midity variance meets the relation δ2 sm=D2 δ2SA + δ2SB and it is determined by relative magnitude of scalar variance of ad- midity variance meets the relation δsm = D2δsA + δsB vection transport. Our study reveals that, if the scalar variance of humidity or CO2 transported by advection is much larger than local scalar variance, observation value of scalar variance will deviate from M-O scaling; when scalar variance of advection transport is close to or less than local scalar variance, the observation value of scalar variance approximately meets M-O scal- ing.