In the last two decades, there has been substantial development in the diagnostic possibilities for examining the small intestine. Compared with computerized tomography, magnetic resonance imaging, capsule endoscopy a...In the last two decades, there has been substantial development in the diagnostic possibilities for examining the small intestine. Compared with computerized tomography, magnetic resonance imaging, capsule endoscopy and double-balloon endoscopy, ultrasonography has the advantage of being cheap, portable, flexible and user-and patient-friendly, while at the same time providing the clinician with image data of high temporal and spatial resolution. The method has limitations with penetration in obesity and with intestinal air impairing image quality. The flexibility ultrasonography offers the examiner also implies that a systematic approach during scanning is needed. This paper reviews the basic scanning techniques and new modalities such as contrast-enhanced ultrasound, elastography, strain rate imaging, hydrosonography, allergosonography, endoscopic sonography and nutritional imaging, and the literature on disease-specific findings in the small intestine. Some of these methods have shown clinical benefit, while others are under research and development to establish their role in the diagnostic repertoire. However, along with improved overall image quality of new ultrasound scanners, these methodshave enabled more anatomical and physiological changes in the small intestine to be observed. Accordingly, ultrasound of the small intestine is an attractive clinical tool to study patients with a range of diseases.展开更多
The ice cap Ulugh Muztagh in the central Kunlun Shan at the northern fringe of the Tibetan Plateau is a very isolated region with arid cold conditions. No observational, meteorological or glaciological ground truth da...The ice cap Ulugh Muztagh in the central Kunlun Shan at the northern fringe of the Tibetan Plateau is a very isolated region with arid cold conditions. No observational, meteorological or glaciological ground truth data is available. Using the Moderate-resolution Imaging Spectroradiometer(MODIS) Level 1 radiance Swath Data(MOD02QKM) with a spatial resolution of 250 m, transient snow lines during the months of July to September in 2001 to 2014 are derived. Results are used to calibrate the physical based Coupled Snowpack and Ice surface energy and Mass balance model(COSIMA). The model runs on a representative detail region of Ulugh Muztagh(UM) on a digital elevation model with the same spatial resolution as the MODIS bands. In the absence of field observations, the model is driven solely by dynamically downscaled global analysis data from the High Asia Refined analysis(HAR). We compare remote sensing derived and modelled mean regional transient snow line altitudes in the course of consecutive summer seasons in 2008 to 2010. The resulting snow line altitude(SLA) and annual equilibrium line altitude(ELA) proxy of both methods coincide very well in their interannual variability in accordance with interannual variability of climatic conditions. Since SLAs of both methods do notconsistently agree on a daily basis a usage of remote sensing derived SLAs for model calibration in the absence of field observation data is only limitedly feasible for daily analysis. ELA approximation using the highest SLA at the end of ablation period may not be applied to UM because the negative winter mass balance(MB) is not reflected in the summer SLA. The study reveals moderate negative MB for UM throughout the modelling period. The mean regional MB of UM accounts for-523±410 mm w.e. a-1 in the modelling period. Hence UM seems not to belong to the area of the ‘Karakorum anomaly' comprising a region of positive mass balances in recent years which has its centre presumably in the Western Kunlun Shan.展开更多
In this paper, an electrical resistance tomography(ERT) imaging method is used as a classifier, and then the Dempster-Shafer's evidence theory with fuzzy clustering is integrated to improve the ERT image quality. ...In this paper, an electrical resistance tomography(ERT) imaging method is used as a classifier, and then the Dempster-Shafer's evidence theory with fuzzy clustering is integrated to improve the ERT image quality. The fuzzy clustering is applied to determining the key mass function, and dealing with the uncertain, incomplete and inconsistent measured imaging data in ERT. The proposed method was applied to images with the same investigated object under eight typical current drive patterns. Experiments were performed on a group of simulations using COMSOL Multiphysics tool and measurements with a piece of porcine lung and a pair of porcine kidneys as test materials. Compared with any single drive pattern, the proposed method can provide images with a spatial resolution of about 10% higher, while the time resolution was almost the same.展开更多
Neutron imaging is an invaluable tool for noninvasive analysis in many fields.However,neutron facilities are expensive and inconvenient to access,while portable sources are not strong enough to form even a static imag...Neutron imaging is an invaluable tool for noninvasive analysis in many fields.However,neutron facilities are expensive and inconvenient to access,while portable sources are not strong enough to form even a static image within an acceptable time frame using traditional neutron imaging.Here we demonstrate a new scheme for single-pixel neutron imaging of real objects,with spatial and spectral resolutions of 100 lm and 0.4%at 1A,respectively.Low illumination down to 1000 neutron counts per frame pattern was achieved.The experimental setup is simple,inexpensive,and especially suitable for low intensity portable sources,which should greatly benefit applications in biology,material science,and industry.展开更多
A 2D neutron detector based on 3He convertor and MWPC with an active area of 200 mmx200 mm has been successfully designed and fabricated. The detector has been tested with Am/Be neutron source and with collimated neut...A 2D neutron detector based on 3He convertor and MWPC with an active area of 200 mmx200 mm has been successfully designed and fabricated. The detector has been tested with Am/Be neutron source and with collimated neutron beam with the wavelength of λ=1.37A. The best spatial resolution of 1.18 mm (FWHM) and good linearity were obtained. This is in good agreement with theoretical calculations.展开更多
The decoding algorithms of two-dimensional Vernier anodes are deduced theoretically.The precision of decoding and uniqueness of encoding are proved.The influencing factors of detection sensitivity and spatial resoluti...The decoding algorithms of two-dimensional Vernier anodes are deduced theoretically.The precision of decoding and uniqueness of encoding are proved.The influencing factors of detection sensitivity and spatial resolution are discussed.The single photon imaging system is constructed,and the two-dimensional Vernier collector is fabricated.The image of the ultra-weak emission source is reconstructed.The spatial resolution of the system is about 100μm.展开更多
We present an analytical analysis of the spatial resolution of quantum ghost imaging implemented by entangled photons from a general, spontaneously parametric, down-conversion process. We find that the resolution is a...We present an analytical analysis of the spatial resolution of quantum ghost imaging implemented by entangled photons from a general, spontaneously parametric, down-conversion process. We find that the resolution is affected by both the pump beam waist and the nonlinear crystal length. Hence, we determined a method to improve the resolution for a certain imaging setup. It should be noted that the resolution is not uniquely related to the degree of entanglement of the photon pair since the resolution can be optimized for a certain degree of entanglement. For certain types of Einstein-Podolsky-Rosen(EPR) states——namely the momentum-correlated or momentum-positively correlated states——the resolution exhibits a simpler relationship with the pump beam waist and crystal length. Further, a vivid numerical simulation of ghost imaging is presented for different types of EPR states,which supports our analysis. This work discusses applicable references to the applications of quantum ghost imaging.展开更多
We present topographic, geomorphologic and compositional characteristics of a l°×l° (-660 km2) region centered near the landing site of Chang'E-3 using the highest spatial resolution data available. ...We present topographic, geomorphologic and compositional characteristics of a l°×l° (-660 km2) region centered near the landing site of Chang'E-3 using the highest spatial resolution data available. We analyze the topography and slope using Digi- tal Terrain Model (DTM) generated from Terrain Camera (TC) images. The exploration region is overall relatively flat and the elevation difference is less than 300 m, and the slopes of 80% area are less than 5~. Impact craters in the exploration region are classified into four types based on their degradation states. We investigate the wrinkle ridges visible in the exploration region in detail using TC and Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) images. We calculate FeO and TiO2 abundances using Multispectral Imager (MI) data, and confirm two basaltic units: the northern part belongs to Imbrian low-Ti/very-low-Ti mare basalts, and the southern part is Eratosthenian low-Ti/high-Ti mare basalts. Finally, we produce a ge- ological map and propose the geologic evolution of the exploration region. We also suggest several rover traverses to explore interesting targets and maximize the potential scientific output.展开更多
Ultrasound(US) imaging in combination with US contrast agents(UCAs) is a powerful tool in the modern biomedical field because of its high spatial resolution, easy access to patients and minimum invasiveness.The microb...Ultrasound(US) imaging in combination with US contrast agents(UCAs) is a powerful tool in the modern biomedical field because of its high spatial resolution, easy access to patients and minimum invasiveness.The microbubble-based UCAs have been widely used in clinical diagnosis; however, they are only limited to the blood pool imaging and not applicable to the tissue-penetrated imaging due to their large particle size and structural instability. Inorganic nanoparticles(NPs), such as silica,gold and Fe x O y, featured with both satisfactory echogenic properties and structural stability have the potential to be used as a new generation of UCAs. In this review, we present the most recent progresses in the tailored construction of inorganic UCAs and their biomedical applications in the US imaging-involved fields. Firstly, the typical inorganic NPs with different structures including solid, hollow and multiple-layer forms will be comprehensively introduced in terms of their structure design,physicochemical property, US imaging mechanism and diverse applications; secondly, the recent progress in exploring the gas-generating inorganic NP system for US imaging purpose will be reviewed, and these intelligent UCAs are multifunctional for simultaneous US imaging and disease therapy; thirdly, several nanocomposite platforms newly constructed by combining inorganic UCAs with other functional components will be presented anddiscussed. These multifunctional NPs are capable of further enhancing the imaging resolution by providing more comprehensive anatomical information simultaneously.Last but not the least, the design criteria for developing promising UCAs to satisfy both clinical demands and optimized US imaging capability will be discussed and summarized in this review.展开更多
Fresnel zone plates are the key optical elements for nanoscale focusing of X-ray beams with high spatial resolution. Conventional zone plates manufactured by planar nanotechnology processes are limited by the achievab...Fresnel zone plates are the key optical elements for nanoscale focusing of X-ray beams with high spatial resolution. Conventional zone plates manufactured by planar nanotechnology processes are limited by the achievable aspect ratios of their zone structures. Additionally, ultra-high resolution X-ray optics with high efficiency requires three-dimensional (3-D) shaped tilted zones. The combination of high spatial resolution and high diffraction efficiency is a fundamental problem in X-ray optics. Based on electrodynamical simulations, we find that the optimized zone plate profile for volume diffraction is given by zone structures with radially increasing tilt angles and decreasing zone heights. On-chip stacking permits the realization of such advanced 3-D profiles without significant loss of the maximum theoretical efficiency. We developed triple layer on-chip stacked zone plates with an overlay accuracy of sub-2 nm which fulfills the nanofabrication requirements. Efficiency measurements of on-chip stacked zone plates show significantly increased values compared to conventional zone plates.展开更多
基金Supported by Medviz.-an imaging and visualisation consortium between Haukeland University Hospital, University in Bergen and Christian Michelsen Research
文摘In the last two decades, there has been substantial development in the diagnostic possibilities for examining the small intestine. Compared with computerized tomography, magnetic resonance imaging, capsule endoscopy and double-balloon endoscopy, ultrasonography has the advantage of being cheap, portable, flexible and user-and patient-friendly, while at the same time providing the clinician with image data of high temporal and spatial resolution. The method has limitations with penetration in obesity and with intestinal air impairing image quality. The flexibility ultrasonography offers the examiner also implies that a systematic approach during scanning is needed. This paper reviews the basic scanning techniques and new modalities such as contrast-enhanced ultrasound, elastography, strain rate imaging, hydrosonography, allergosonography, endoscopic sonography and nutritional imaging, and the literature on disease-specific findings in the small intestine. Some of these methods have shown clinical benefit, while others are under research and development to establish their role in the diagnostic repertoire. However, along with improved overall image quality of new ultrasound scanners, these methodshave enabled more anatomical and physiological changes in the small intestine to be observed. Accordingly, ultrasound of the small intestine is an attractive clinical tool to study patients with a range of diseases.
基金supported by the German Research Foundation(DFG)Priority Programme 1372,‘Tibetan Plateau:Formation Climate Ecosystems’through the DynRG-TiP(‘Dynamic Response of Glaciers on the Tibetan Plateau to Climate Change’)project under codes SCHN 680/3-3 and SCHE 750/4-3the German Federal Ministry of Education and Research(BMBF)Central Asia Monsoon Dynamics and GeoEcosystems(CAME)program,through the WET project(‘Variability and Trends in Water Balance Components of Benchmark Drainage Basins on the Tibetan Plateau’)under code 03G0804A
文摘The ice cap Ulugh Muztagh in the central Kunlun Shan at the northern fringe of the Tibetan Plateau is a very isolated region with arid cold conditions. No observational, meteorological or glaciological ground truth data is available. Using the Moderate-resolution Imaging Spectroradiometer(MODIS) Level 1 radiance Swath Data(MOD02QKM) with a spatial resolution of 250 m, transient snow lines during the months of July to September in 2001 to 2014 are derived. Results are used to calibrate the physical based Coupled Snowpack and Ice surface energy and Mass balance model(COSIMA). The model runs on a representative detail region of Ulugh Muztagh(UM) on a digital elevation model with the same spatial resolution as the MODIS bands. In the absence of field observations, the model is driven solely by dynamically downscaled global analysis data from the High Asia Refined analysis(HAR). We compare remote sensing derived and modelled mean regional transient snow line altitudes in the course of consecutive summer seasons in 2008 to 2010. The resulting snow line altitude(SLA) and annual equilibrium line altitude(ELA) proxy of both methods coincide very well in their interannual variability in accordance with interannual variability of climatic conditions. Since SLAs of both methods do notconsistently agree on a daily basis a usage of remote sensing derived SLAs for model calibration in the absence of field observation data is only limitedly feasible for daily analysis. ELA approximation using the highest SLA at the end of ablation period may not be applied to UM because the negative winter mass balance(MB) is not reflected in the summer SLA. The study reveals moderate negative MB for UM throughout the modelling period. The mean regional MB of UM accounts for-523±410 mm w.e. a-1 in the modelling period. Hence UM seems not to belong to the area of the ‘Karakorum anomaly' comprising a region of positive mass balances in recent years which has its centre presumably in the Western Kunlun Shan.
基金Supported by National Natural Science Foundation of China(No.61774014 and No.60772080)
文摘In this paper, an electrical resistance tomography(ERT) imaging method is used as a classifier, and then the Dempster-Shafer's evidence theory with fuzzy clustering is integrated to improve the ERT image quality. The fuzzy clustering is applied to determining the key mass function, and dealing with the uncertain, incomplete and inconsistent measured imaging data in ERT. The proposed method was applied to images with the same investigated object under eight typical current drive patterns. Experiments were performed on a group of simulations using COMSOL Multiphysics tool and measurements with a piece of porcine lung and a pair of porcine kidneys as test materials. Compared with any single drive pattern, the proposed method can provide images with a spatial resolution of about 10% higher, while the time resolution was almost the same.
基金supported by the National Key R&D Program of China(2016YFA0401504,2017YFA0403301,2017YFB0503301,and 2018YFB0504302)the National Natural Science Foundation of China(11991073,61975229,61805006,and U1932219)+2 种基金the Key Program of Chinese Academy of Sciences(XDA25030400,and XDB17030500)the Civil Space Project(D040301)the Science Challenge Project(TZ2018005)。
文摘Neutron imaging is an invaluable tool for noninvasive analysis in many fields.However,neutron facilities are expensive and inconvenient to access,while portable sources are not strong enough to form even a static image within an acceptable time frame using traditional neutron imaging.Here we demonstrate a new scheme for single-pixel neutron imaging of real objects,with spatial and spectral resolutions of 100 lm and 0.4%at 1A,respectively.Low illumination down to 1000 neutron counts per frame pattern was achieved.The experimental setup is simple,inexpensive,and especially suitable for low intensity portable sources,which should greatly benefit applications in biology,material science,and industry.
基金supported by the National Natural Science Foundation of China(Grant No.11127508)
文摘A 2D neutron detector based on 3He convertor and MWPC with an active area of 200 mmx200 mm has been successfully designed and fabricated. The detector has been tested with Am/Be neutron source and with collimated neutron beam with the wavelength of λ=1.37A. The best spatial resolution of 1.18 mm (FWHM) and good linearity were obtained. This is in good agreement with theoretical calculations.
基金supported by the National Natural Science Foundation of China (Grant No. 10878005/A03)
文摘The decoding algorithms of two-dimensional Vernier anodes are deduced theoretically.The precision of decoding and uniqueness of encoding are proved.The influencing factors of detection sensitivity and spatial resolution are discussed.The single photon imaging system is constructed,and the two-dimensional Vernier collector is fabricated.The image of the ultra-weak emission source is reconstructed.The spatial resolution of the system is about 100μm.
基金supported by the National Natural Science Foundation of China(Grant Nos.11174121,11321063,91121001,and 91321312)the National Program on Key Basic Research Project(Grant No.2012CB921802)
文摘We present an analytical analysis of the spatial resolution of quantum ghost imaging implemented by entangled photons from a general, spontaneously parametric, down-conversion process. We find that the resolution is affected by both the pump beam waist and the nonlinear crystal length. Hence, we determined a method to improve the resolution for a certain imaging setup. It should be noted that the resolution is not uniquely related to the degree of entanglement of the photon pair since the resolution can be optimized for a certain degree of entanglement. For certain types of Einstein-Podolsky-Rosen(EPR) states——namely the momentum-correlated or momentum-positively correlated states——the resolution exhibits a simpler relationship with the pump beam waist and crystal length. Further, a vivid numerical simulation of ghost imaging is presented for different types of EPR states,which supports our analysis. This work discusses applicable references to the applications of quantum ghost imaging.
基金supported by the National Natural Science Foundation of China(Grant No.41373066)the Key Research Program of the Chinese Academy of Sciences(Grant No.KGZD-EW-603)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education(SRFDP)(Grant No.20130145130001)China Postdoctoral Science Foundation(Grant No.2013M540614)
文摘We present topographic, geomorphologic and compositional characteristics of a l°×l° (-660 km2) region centered near the landing site of Chang'E-3 using the highest spatial resolution data available. We analyze the topography and slope using Digi- tal Terrain Model (DTM) generated from Terrain Camera (TC) images. The exploration region is overall relatively flat and the elevation difference is less than 300 m, and the slopes of 80% area are less than 5~. Impact craters in the exploration region are classified into four types based on their degradation states. We investigate the wrinkle ridges visible in the exploration region in detail using TC and Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) images. We calculate FeO and TiO2 abundances using Multispectral Imager (MI) data, and confirm two basaltic units: the northern part belongs to Imbrian low-Ti/very-low-Ti mare basalts, and the southern part is Eratosthenian low-Ti/high-Ti mare basalts. Finally, we produce a ge- ological map and propose the geologic evolution of the exploration region. We also suggest several rover traverses to explore interesting targets and maximize the potential scientific output.
基金supported by China National Funds for Distinguished Young Scientists(51225202)the National Natural Science Foundation of China(51402329)+1 种基金Science Foundation for Youth Scholar of State Key Laboratory of High Performance Ceramics and Superfine Microstructures(SKL201404)Shanghai Excellent Academic Leaders Program(14XD1403800)
文摘Ultrasound(US) imaging in combination with US contrast agents(UCAs) is a powerful tool in the modern biomedical field because of its high spatial resolution, easy access to patients and minimum invasiveness.The microbubble-based UCAs have been widely used in clinical diagnosis; however, they are only limited to the blood pool imaging and not applicable to the tissue-penetrated imaging due to their large particle size and structural instability. Inorganic nanoparticles(NPs), such as silica,gold and Fe x O y, featured with both satisfactory echogenic properties and structural stability have the potential to be used as a new generation of UCAs. In this review, we present the most recent progresses in the tailored construction of inorganic UCAs and their biomedical applications in the US imaging-involved fields. Firstly, the typical inorganic NPs with different structures including solid, hollow and multiple-layer forms will be comprehensively introduced in terms of their structure design,physicochemical property, US imaging mechanism and diverse applications; secondly, the recent progress in exploring the gas-generating inorganic NP system for US imaging purpose will be reviewed, and these intelligent UCAs are multifunctional for simultaneous US imaging and disease therapy; thirdly, several nanocomposite platforms newly constructed by combining inorganic UCAs with other functional components will be presented anddiscussed. These multifunctional NPs are capable of further enhancing the imaging resolution by providing more comprehensive anatomical information simultaneously.Last but not the least, the design criteria for developing promising UCAs to satisfy both clinical demands and optimized US imaging capability will be discussed and summarized in this review.
文摘Fresnel zone plates are the key optical elements for nanoscale focusing of X-ray beams with high spatial resolution. Conventional zone plates manufactured by planar nanotechnology processes are limited by the achievable aspect ratios of their zone structures. Additionally, ultra-high resolution X-ray optics with high efficiency requires three-dimensional (3-D) shaped tilted zones. The combination of high spatial resolution and high diffraction efficiency is a fundamental problem in X-ray optics. Based on electrodynamical simulations, we find that the optimized zone plate profile for volume diffraction is given by zone structures with radially increasing tilt angles and decreasing zone heights. On-chip stacking permits the realization of such advanced 3-D profiles without significant loss of the maximum theoretical efficiency. We developed triple layer on-chip stacked zone plates with an overlay accuracy of sub-2 nm which fulfills the nanofabrication requirements. Efficiency measurements of on-chip stacked zone plates show significantly increased values compared to conventional zone plates.