Abstract Sea cucumbers belong to the Class Holothuroidea of marine invertebrates. They are commercially valuable and prized as a food and folk medicine in Asia. Nutritionally, sea cucumbers have an impressive profile ...Abstract Sea cucumbers belong to the Class Holothuroidea of marine invertebrates. They are commercially valuable and prized as a food and folk medicine in Asia. Nutritionally, sea cucumbers have an impressive profile of valuable nutrients such as vitamins, minerals and amino acids. A number of unique biological and pharmacological activities/properties, including anticancer, anticoagulant/antithrombotic, antimicrobial, antioxidant, antihyperlipidemic, antihyperglycemic, anti-inflammatory, antihypertension and radioprotective, have been ascribed to various compounds isolated from sea cucumbers. The therapeutic properties and medicinal benefits of sea cucumbers can be linked to the presence of a wide array ofbioactives, especially triterpene glycosides, acid mucopolysaccharide, sphingoid bases, glycolipids, fucosylated chondroitin sulfate, polysaccharides, phospholipids, cerebrosides, phosphatidylcholines, and other extracts and hydrolysates. This review highlights the valuable bioactive components as well as the multiple therapeutic properties of sea cucumbers with a view to exploring their potential uses as functional foods and a natural source of new multifunctional drugs.展开更多
The past five years have witnessed the discovery of the endoplasmic reticulum calcium(Ca2+) sensor STIM1 and the plasma membrane Ca2+channel Orai1 as the bona fide molecular components of the store-operated Ca2+ entry...The past five years have witnessed the discovery of the endoplasmic reticulum calcium(Ca2+) sensor STIM1 and the plasma membrane Ca2+channel Orai1 as the bona fide molecular components of the store-operated Ca2+ entry(SOCE) and the Ca2+ release-activated Ca2+current(I CRAC) .It has been known for two decades that SOCE and ICRAC are required for lymphocyte activation as evidenced by severe immunodeficient phenotypes in patients lacking ICRAC.In recent years however,studies have uncovered expression of STIM1 and Orai1 proteins in various tissues and described additional roles for these proteins in physiological functions and pathophysiological conditions.Here,we will summarize novel findings pertaining to the role of STIM1 and Orai1 in the vascular system and discuss their potential use as targets in the therapy of vascular disease.展开更多
Plants synthesize and accumulate large amount of specialized (or secondary) metabolites also known as natural products, which provide a rich source for modem pharmacy. In China, plants have been used in traditional ...Plants synthesize and accumulate large amount of specialized (or secondary) metabolites also known as natural products, which provide a rich source for modem pharmacy. In China, plants have been used in traditional medicine for thousands of years. Recent development of molecular biology, genomics and functional genomics as well as high-throughput analytical chemical technologies has greatly promoted the research on medicinal plants. In this article, we review recent advances in the elucidation of biosynthesis of specialized metabolites in medicinal plants, including phenylpropanoids, terpenoids and alkaloids. Th- ese natural products may share a common upstream path- way to form a limited numbers of common precursors, but are characteristic in distinct modifications leading to highly variable structures. Although this review is focused on traditional Chinese medicine, other plants with a great medicinal interest or potential are also discussed. Under- standing of their biosynthesis processes is critical for producing these highly value molecules at large scale and low cost in microbes and will benefit to not only human health but also plant resource conservation.展开更多
文摘Abstract Sea cucumbers belong to the Class Holothuroidea of marine invertebrates. They are commercially valuable and prized as a food and folk medicine in Asia. Nutritionally, sea cucumbers have an impressive profile of valuable nutrients such as vitamins, minerals and amino acids. A number of unique biological and pharmacological activities/properties, including anticancer, anticoagulant/antithrombotic, antimicrobial, antioxidant, antihyperlipidemic, antihyperglycemic, anti-inflammatory, antihypertension and radioprotective, have been ascribed to various compounds isolated from sea cucumbers. The therapeutic properties and medicinal benefits of sea cucumbers can be linked to the presence of a wide array ofbioactives, especially triterpene glycosides, acid mucopolysaccharide, sphingoid bases, glycolipids, fucosylated chondroitin sulfate, polysaccharides, phospholipids, cerebrosides, phosphatidylcholines, and other extracts and hydrolysates. This review highlights the valuable bioactive components as well as the multiple therapeutic properties of sea cucumbers with a view to exploring their potential uses as functional foods and a natural source of new multifunctional drugs.
基金supported by the National Institutes of Health(Grant No. 5R01HL097111)to Mohamed Trebak
文摘The past five years have witnessed the discovery of the endoplasmic reticulum calcium(Ca2+) sensor STIM1 and the plasma membrane Ca2+channel Orai1 as the bona fide molecular components of the store-operated Ca2+ entry(SOCE) and the Ca2+ release-activated Ca2+current(I CRAC) .It has been known for two decades that SOCE and ICRAC are required for lymphocyte activation as evidenced by severe immunodeficient phenotypes in patients lacking ICRAC.In recent years however,studies have uncovered expression of STIM1 and Orai1 proteins in various tissues and described additional roles for these proteins in physiological functions and pathophysiological conditions.Here,we will summarize novel findings pertaining to the role of STIM1 and Orai1 in the vascular system and discuss their potential use as targets in the therapy of vascular disease.
基金supported by the National Natural Science Foundation of China(31200222)Special Fund for Shanghai Landscaping Administration Bureau Program(F132424F112418 and G152421)
文摘Plants synthesize and accumulate large amount of specialized (or secondary) metabolites also known as natural products, which provide a rich source for modem pharmacy. In China, plants have been used in traditional medicine for thousands of years. Recent development of molecular biology, genomics and functional genomics as well as high-throughput analytical chemical technologies has greatly promoted the research on medicinal plants. In this article, we review recent advances in the elucidation of biosynthesis of specialized metabolites in medicinal plants, including phenylpropanoids, terpenoids and alkaloids. Th- ese natural products may share a common upstream path- way to form a limited numbers of common precursors, but are characteristic in distinct modifications leading to highly variable structures. Although this review is focused on traditional Chinese medicine, other plants with a great medicinal interest or potential are also discussed. Under- standing of their biosynthesis processes is critical for producing these highly value molecules at large scale and low cost in microbes and will benefit to not only human health but also plant resource conservation.