This study aimed to evaluate the feasibility and safety of a novel stent manufactured by metal injection molding(MIM)in clinical practice through animal experiments.Vessel stents were prepared using powder injection m...This study aimed to evaluate the feasibility and safety of a novel stent manufactured by metal injection molding(MIM)in clinical practice through animal experiments.Vessel stents were prepared using powder injection molding technology to considerably improve material utilization.The influence of MIM carbon impurity variation on the mechanical properties and corrosion resistance of 316L stainless steel was studied.In vitro cytotoxicity and animal transplantation tests were also carried out to evaluate the safety of MIM stents.The results showed that the performance of 316L stainless steel was very sensitive to the carbon content.Carbon fluctuations should be precisely controlled during MIM.All MIM stents were successfully implanted into the aortas of the dogs,and the MIM 316L stents had no significant cytotoxicity.The novel intravascular stent manufactured using MIM can maintain a stable form and structure with fast endothelialization of the luminal surface of the stent and ensure long-term patency in an animal model.The novel intravascular stent manufactured using MIM demonstrates favorable structural,physical,and chemical stability,as well as biocompatibility,offering promising application in clinical practice.展开更多
The recent research and development of forged magnesium road wheel were reviewed.Methods of flow-forming,spin forging of manufacturing a forged magnesium alloy wheel were introduced.A new extrusion method was investig...The recent research and development of forged magnesium road wheel were reviewed.Methods of flow-forming,spin forging of manufacturing a forged magnesium alloy wheel were introduced.A new extrusion method was investigated especially. Extrusion from hollow billet was proposed in order to enhance the strength of spoke portion and reduce the maximum forming load. By means of the developed technique,the one-piece Mg wheels were produced successfully by extrusion from AZ80+alloy.At the same time,the existing problems on the research and development of forged magnesium road wheel were analyzed.The impact testing,radial fatigue testing and bending fatigue testing results show that AZ80+wheel can meet application requirement in automobile industry.展开更多
The objective of this work is to compare the responses of geosynthetically-reinforced embankment and unreinforced embankment due to road widening by using the centrifuge model tests and a two-dimensional(2D) finite el...The objective of this work is to compare the responses of geosynthetically-reinforced embankment and unreinforced embankment due to road widening by using the centrifuge model tests and a two-dimensional(2D) finite element(FE) model. The measured and calculated responses of the embankment and foundation exposed to road widening include the settlement,horizontal displacement,pore water pressure,and shear stresses. It is found that the road widening changed the transverse slope of the original pavement surface resulting from the nonuniform settlements. The maximum horizontal movement is found to be located at the shoulder of the original embankment. Although the difference is small,it is clearly seen that the geosynthetic reinforcement reduces the nonuniform settlements and horizontal movements due to road widening. Thus the reinforcement reduces the potential of pavement cracking and increases the stability of the embankment on soft ground in road widening.展开更多
基金the Major Project of the Ministry of Science and Technology of Changsha,China(No.kh2003014)the Hunan Provincial Natural Science Foundation,China(Nos.2018JJ2584,2018JJ3507)+1 种基金the Beijing Municipal Science and Technology Comission,China(No.D171100002917004)the Guangxi Science and Technology Plan Project,China(No.AD16380019).
文摘This study aimed to evaluate the feasibility and safety of a novel stent manufactured by metal injection molding(MIM)in clinical practice through animal experiments.Vessel stents were prepared using powder injection molding technology to considerably improve material utilization.The influence of MIM carbon impurity variation on the mechanical properties and corrosion resistance of 316L stainless steel was studied.In vitro cytotoxicity and animal transplantation tests were also carried out to evaluate the safety of MIM stents.The results showed that the performance of 316L stainless steel was very sensitive to the carbon content.Carbon fluctuations should be precisely controlled during MIM.All MIM stents were successfully implanted into the aortas of the dogs,and the MIM 316L stents had no significant cytotoxicity.The novel intravascular stent manufactured using MIM can maintain a stable form and structure with fast endothelialization of the luminal surface of the stent and ensure long-term patency in an animal model.The novel intravascular stent manufactured using MIM demonstrates favorable structural,physical,and chemical stability,as well as biocompatibility,offering promising application in clinical practice.
基金Project(50735005)supported by the National Natural Science Foundation of China
文摘The recent research and development of forged magnesium road wheel were reviewed.Methods of flow-forming,spin forging of manufacturing a forged magnesium alloy wheel were introduced.A new extrusion method was investigated especially. Extrusion from hollow billet was proposed in order to enhance the strength of spoke portion and reduce the maximum forming load. By means of the developed technique,the one-piece Mg wheels were produced successfully by extrusion from AZ80+alloy.At the same time,the existing problems on the research and development of forged magnesium road wheel were analyzed.The impact testing,radial fatigue testing and bending fatigue testing results show that AZ80+wheel can meet application requirement in automobile industry.
基金Project(200231800032) supported by Research on Transportation Construction in Western, China
文摘The objective of this work is to compare the responses of geosynthetically-reinforced embankment and unreinforced embankment due to road widening by using the centrifuge model tests and a two-dimensional(2D) finite element(FE) model. The measured and calculated responses of the embankment and foundation exposed to road widening include the settlement,horizontal displacement,pore water pressure,and shear stresses. It is found that the road widening changed the transverse slope of the original pavement surface resulting from the nonuniform settlements. The maximum horizontal movement is found to be located at the shoulder of the original embankment. Although the difference is small,it is clearly seen that the geosynthetic reinforcement reduces the nonuniform settlements and horizontal movements due to road widening. Thus the reinforcement reduces the potential of pavement cracking and increases the stability of the embankment on soft ground in road widening.