期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
从全局到局部:双注意力融合去雾网络 被引量:2
1
作者 杨瑷玮 王华珂 侯兴松 《西安交通大学学报》 EI CAS CSCD 北大核心 2023年第7期191-200,共10页
为了处理现有的基于卷积神经网络去雾方法只使用单一的注意力、很难生成细节生动的清晰图像,且容易导致色彩失真的问题,提出了一个全局与局部注意力融合的图像去雾方法,以获得正常清晰度和无色彩失真的去雾图像。首先利用通道注意力将... 为了处理现有的基于卷积神经网络去雾方法只使用单一的注意力、很难生成细节生动的清晰图像,且容易导致色彩失真的问题,提出了一个全局与局部注意力融合的图像去雾方法,以获得正常清晰度和无色彩失真的去雾图像。首先利用通道注意力将输入的有雾图像在通道维度切分为两部分,一部分送入通道像素注意力通道抽取局部特征,另一部分送入Transformer通道学习全局特征,然后利用像素注意力对两个通道学习的特征进行融合,将上述模块作为基本单元组合为一个多级U型去雾网络,增加残差连接缓解上下采样导致的细节信息丢失,最后在网络底层加入一个Transformer模块学习全局信息。在多个公开可用的去雾图像数据集RESIDE SOTS Indoor、RESIDE SOTS Outdoor上测试所提方法的有效性,结果表明:对比经典的去雾方法,所提网络生成的图像细节更丰富并且色彩失真最少;在RESIDE SOTS Outdoor数据集上,相比经典的FFA-Net,峰值信噪比提高1.16 dB,相比GridDehazeNet,峰值信噪比提高3.68 dB。提出的全局与局部注意力融合方法能有效地去除雾霾,提升图像的对比度与清晰度,设计的多级U型去雾网络和残差连接结构能够缓解细节丢失,提升去雾效果,获得清晰的图像。 展开更多
关键词 图像去雾 全局局部注意力融合 通道像素注意力 Transformer模块
下载PDF
基于空间通道注意力的肝脏肿瘤分割
2
作者 何琼 陆雪松 《现代信息科技》 2024年第22期36-40,46,共6页
针对肝脏肿瘤分割面临的病灶形状、大小和位置差异明显等问题,文章提出了一种基于空间通道注意力的三维肝脏肿瘤分割方法。在3D U-Net的基础上融合了Transformer,提出成对全局和局部注意力PGLA(Paired Global Local Attention)模块替代T... 针对肝脏肿瘤分割面临的病灶形状、大小和位置差异明显等问题,文章提出了一种基于空间通道注意力的三维肝脏肿瘤分割方法。在3D U-Net的基础上融合了Transformer,提出成对全局和局部注意力PGLA(Paired Global Local Attention)模块替代Transformer中的传统注意力模块,并在尺度变换前引入CBAM(Convolutional Block Attention Module)模块。在肝脏肿瘤分割挑战赛数据集上的实验结果显示该方法在肿瘤分割的Dice系数上达到了69.18%,这些成绩均优于当前流行的模型,这证明了该方法在提高肝脏肿瘤分割精度方面的有效性。 展开更多
关键词 3D肝脏肿瘤分割 3D U-Net TRANSFORMER 成对全局和局部注意力模块 卷积注意力模块
下载PDF
基于Bert-GNNs异质图注意力网络的早期谣言检测
3
作者 欧阳祺 陈鸿昶 +2 位作者 刘树新 王凯 李星 《电子学报》 EI CAS CSCD 北大核心 2024年第1期311-323,共13页
网络谣言的广泛传播已经造成了很大的社会危害,因此早期谣言检测任务已成为重要的研究热点.现有谣言检测方法主要从文本内容、用户配置和传播结构中挖掘相关特征,但没有同时利用到文本全局语义关系和局部上下文语义关系.为了克服以上局... 网络谣言的广泛传播已经造成了很大的社会危害,因此早期谣言检测任务已成为重要的研究热点.现有谣言检测方法主要从文本内容、用户配置和传播结构中挖掘相关特征,但没有同时利用到文本全局语义关系和局部上下文语义关系.为了克服以上局限性,充分利用到谣言数据中的文本全局-局部上下文语义关系、文本语义内容特征和推文传播的结构特征,本文提出了一种基于Bert-GNNs异质图注意力网络的早期谣言检测算法(Bert-GNNs Heterogeneous Graph Attention Network,BGHGAN).该方法根据历史谣言集和用户特征构建一个推文-词-用户异质图,通过采用预训练语言模型Bert和图卷积神经网络(Graph Convolutional Network,GCN)结合的方法进行特征学习,以挖掘谣言的文本语义特征和文本之间的关系,并将异质图分解为推文-词子图和推文-用户子图,采用图注意力网络(Graph Attention network,GAT)的方式分别进行特征学习,从而更充分利用文本全局-局部上下文语义关系和传播图的全局结构关系以加强特征表达;最后,通过子图级注意力机制将不同模块的学习集成进行最终的谣言检测.所提算法在真实的Twitter15和Twitter16数据上进行实验,验证了该算法在检测准确率上分别为91.4%和91.9%,较现有最佳模型分别提高了1%和1.4%,也具备在早期阶段对谣言的检测能力;同时,本文通过实验探讨了不同特征对谣言检测的重要性、对异质图构建质量的重要性. 展开更多
关键词 虚假谣言 Bert-GCN模块 子图注意力网络模块 全局语义关系 全局结构关系 局部上下文语义关系
下载PDF
GCM^(+)-LANet:遥感图像语义分割的全局卷积模块与局部注意力网络模型 被引量:1
4
作者 翁梦倩 胡蕾 +2 位作者 张永梅 凌杰 李云洪 《遥感技术与应用》 CSCD 北大核心 2022年第4期820-828,共9页
遥感图像地物种类丰富、尺寸多变、分布不均衡、背景复杂,导致经典图像语义分割网络难以在遥感图像上取得理想分割效果。局部注意力网络模型(LANet)在遥感图像语义分割上取得了较好的实验效果,但大尺寸、小尺寸和细长的地物目标分割效... 遥感图像地物种类丰富、尺寸多变、分布不均衡、背景复杂,导致经典图像语义分割网络难以在遥感图像上取得理想分割效果。局部注意力网络模型(LANet)在遥感图像语义分割上取得了较好的实验效果,但大尺寸、小尺寸和细长的地物目标分割效果不佳。提出了一种改进LANet网络的高分辨率遥感图像语义分割网络模型,首先,针对全局特征提取设计了全局卷积模块(GCM^(+)),以组合卷积的形式扩大感受野,提升大尺寸地物目标的分割性能;其次,利用针对计算机视觉提出的激活函数Funnel ReLU(FReLU)来解决细小目标漏分的问题。实验结果表明:该网络模型在Potsdam数据集上平均交并比达到了75.83%,像素准确率达到了94.95%,比基础网络LANet有较大提升。 展开更多
关键词 遥感图像 语义分割 全局卷积模块 局部注意力网络模型 激活函数
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部