In the present study expression of estrogen receptor subtype -alpha (ERalpha) and -beta (ERbeta) in the cerebral cortex, cerebellum, and olfactory bulb was investigated and compared between neonatal (1 to approximatel...In the present study expression of estrogen receptor subtype -alpha (ERalpha) and -beta (ERbeta) in the cerebral cortex, cerebellum, and olfactory bulb was investigated and compared between neonatal (1 to approximately 3-days-old) and adult (250 to approximately 350 g) rats, using reverse transcription-polymerase chain reaction (RT-PCR). No ERalpha transcripts were detectable in the adult cerebellum and olfactory bulb, whereas very weak expression of ERalpha was present in the adult cerebral cortex. No significant difference in ERbeta transcripts was detectable between the neonatal and adult rats. While transcripts for both ER subtypes were co-expressed in these brain areas of neonatal rats, although ERalpha expression was significantly weaker than ERbeta. Even in the cerebral cortex known to contain both ER subtypes in adult rats, ERalpha transcripts in neonatal rats were much higher than in adult. These observations provide evidence for the existence of different expression patterns of ERalpha/ERbeta transcripts in these three brain areas between the neonatal and adult rats, suggesting that each ER subtype may play a distinct role in the regulation of differentiation, development, and functions of the brain by estrogen.展开更多
文摘In the present study expression of estrogen receptor subtype -alpha (ERalpha) and -beta (ERbeta) in the cerebral cortex, cerebellum, and olfactory bulb was investigated and compared between neonatal (1 to approximately 3-days-old) and adult (250 to approximately 350 g) rats, using reverse transcription-polymerase chain reaction (RT-PCR). No ERalpha transcripts were detectable in the adult cerebellum and olfactory bulb, whereas very weak expression of ERalpha was present in the adult cerebral cortex. No significant difference in ERbeta transcripts was detectable between the neonatal and adult rats. While transcripts for both ER subtypes were co-expressed in these brain areas of neonatal rats, although ERalpha expression was significantly weaker than ERbeta. Even in the cerebral cortex known to contain both ER subtypes in adult rats, ERalpha transcripts in neonatal rats were much higher than in adult. These observations provide evidence for the existence of different expression patterns of ERalpha/ERbeta transcripts in these three brain areas between the neonatal and adult rats, suggesting that each ER subtype may play a distinct role in the regulation of differentiation, development, and functions of the brain by estrogen.