As a new frontier in catalysis field,single-atom catalysts(SACs)hold unique electronic structure and high atom utilization,which have displayed unprecedented activity and selectivity toward a wide range of catalytic r...As a new frontier in catalysis field,single-atom catalysts(SACs)hold unique electronic structure and high atom utilization,which have displayed unprecedented activity and selectivity toward a wide range of catalytic reactions.However,many reported SACs are susceptible to Ostwald ripening process in high temperature environment or long-term catalytic application,which will cause sintering and deactivation.This is due to the weak interaction between the metal atom and supports.The regeneration and recycling of deactivated catalysts will greatly increase the time and economic cost of industrial production.Therefore,it is necessary to develop SACs with excellent thermal stability to meet the industrial demands.Here,we discuss the fundamental comprehension of the stability of thermally stable SACs obtained from different synthesis methods.The influences of the speciation of metal centers and coordination environments on thermal stability are summarized.The importance of using novel in situ and operando characterizations to reveal dynamic structural evolution under synthesis and reaction conditions and to identify active sites of thermally stable SACs is highlighted.The mechanistic understanding of the unique role of thermally stable SACs in thermocatalytic application is also discussed.At last,a brief perspective on the remaining challenges and future directions of thermally stable SACs is presented.展开更多
By using different organic ligands, two 3D inorganic-organic hybrid compounds Co(C4H4N2)(VO3)2 1 and Co(C12H12N2)(VO3)2 2 were synthesized by hydrothermal reaction and characterized by X-ray crystallography. C...By using different organic ligands, two 3D inorganic-organic hybrid compounds Co(C4H4N2)(VO3)2 1 and Co(C12H12N2)(VO3)2 2 were synthesized by hydrothermal reaction and characterized by X-ray crystallography. Crystal data: 1. crystal system orthorhombic, space group Pnna, a=1 0.188(2) A, b=1 1.497(2) A, c=7.3975(15) A, V=866.5(3) A^3, Z=4, Dcalcd= 2.705 g/cm^3; 2. crystal system triclinic, space group P1^- (No. 2), a=8.3190(17) A, b=8.4764(17) A, c=1 1.183(2) A, a=95.48(3)°, β=92.03(3)°, γ=107.24(3)°,V=748.0(3) A^3, Z=2, Dcalcd= 1.958 g/cm^3. The framework of compound 1 contains both {Co(C4H4N2)} and infinite metavanadate chains. Crystal structure of compound 2 is constructed with inorganic {CoV2O6} layers across-linked by organic 1,2-bis(4-pyridyl) ethane ligands. The two compounds are thermally stable to approximately 410 ℃ and 350 ℃, respectively. Their optical band gaps are determined to be 2.13 eV and 2.12 eV by UV-VIS-NIR diffuse reflectance spectra, which revealed their nature of semiconductor and optical absorption features.展开更多
Graphene(GR),a single‐layer carbon sheet with a hexagonal packed lattice structure,has displayed attractive potential and demonstrably become the research focus in artificial photocatalysis due to its enchanting prop...Graphene(GR),a single‐layer carbon sheet with a hexagonal packed lattice structure,has displayed attractive potential and demonstrably become the research focus in artificial photocatalysis due to its enchanting properties in enhancing light absorption,electron transfer dynamics,and surface reactions.Currently,numerous efforts have shown that the properties of GR,which are closely correlated to the photocatalytic performance of GR‐based composites are significantly affected by the synthesis methods.Herein,we first introduce the optimization strategies of GR‐based hybrids and then elaborate the synthesis of GR‐based composite photocatalysts oriented by manifold roles of GR in photoredox catalysis,containing photoelectron mediator and acceptor,improving adsorption capacity,regulating light absorption range and intensity,as well as macromolecular photosensitizer.Beyond that,a brief outlook on the challenges in this burgeoning research field and potential evolution strategies for enhancing the photoactivity of GR‐based hybrids is presented and we anticipate that this review could provide some enlightenments for the rational construction and application of multifunctional GR‐based composite photocatalysts.展开更多
In this work, author evaluated past theories and perspectives behind the definitions of science and/or branches of science. Also some of the philosophers of science and their specific philosophical interests were expr...In this work, author evaluated past theories and perspectives behind the definitions of science and/or branches of science. Also some of the philosophers of science and their specific philosophical interests were expressed. Author considered some type of interactions between some disciplines to determine, to solve the philosophical/scientific problems and to define the possible solutions. The purposes of this article are: (i) to define new synthesis method, (ii) to define new perspective for the philosophy of science, (iii) to define relation between new philosophy perspective and philosophy of science, (iv) to define and organize name, number, relations, and correct structure between special science branches and philosophy of science, (v) to define necessary and sufficient number of branches for philosophy of science, (vi) to define and express the importance and place of new philosophy of science perspective in the new system, (vii) to extend the definition/limits of philosophy of science, (viii) to re-define meanings of some philosophical/scientific theories, (ix) to define systematic solution for the conflicts, problems, confusions about philosophy of science, sciences and branches of science, (x) to define new branches of science, (xi) to re-construct branches and hierarchy of science, (xii) to define new theories about science and branches of science. Author considered R-Synthesis as a method for the evaluation oftbe philosophy, philosophy of science, sciences and branches of science. This R-Synthesis includes evaluation of eight categories of general/specific perspective, 21-dimensions, and 12 general subjects (with related scope and contents) for the past 12,000 years. It is a kind of synthesis of science and non-science, physical science and non-physical science, religious science and non-religious science, and others. In this article, author defined 27 possible definitive/certain result cases for this new synthesis. Author defined the possible formation stages shortly to express new disciplines, new constructional and/or complementary theories. These theories are considered to define 21 major effective disciplines. New philosophy perspective is defined (R-Philosophy) shortly. New perspective and sub branches are defined for the philosophy of science. Major sciences are defined due to new basic philosophies. 42-basic components are defined for each science branch. New and/or re-constructed sciences, branches of science, basic sciences, and new hierarchy of science are defined with figure. Electromagnetic sciences, information sciences, and system sciences are defined specifically. Hybrid Sciences, New Era Science, and Ideal Scientific System are defined with general/specific figure. Relation between the some old branches and new branches of science was expressed generally due to new perspective of philosophy of science.展开更多
For seismic design of structure and machinery, it is important to reproduce input earthquake motions that are likely to occur at a target site. Among the various methods used for generating artificial earthquake motio...For seismic design of structure and machinery, it is important to reproduce input earthquake motions that are likely to occur at a target site. Among the various methods used for generating artificial earthquake motions, the Synthesis Method of Trigonometric Function is used widely. In this method, artificial waves are reproduced by superimposing sine waves and then adding information about amplitude and phase in the frequency domain. In the Japanese architectural design code, the amplitude is standardized as the target response spectrum, and the phase can be defined by random numbers or by the phase of one observed wave. However, a random phase is distinctly different from the phase of an actual earthquake. Further, the phase of one observed wave is confined to the phase characteristic of the artificial wave of only one specific earthquake motion. In this paper, the authors introduce a new convenient method to reproduce artificial waves that not only satisfy the standardized spectrum property but also have the time-frequency characteristics of multiple observed waves. The authors show the feature of the artificial waves, discuss the merits of the method by comparing with existing methods, and report the tendencies of the non-liuear response by using simple model.展开更多
The accuracy of background clutter model is a key factor which determines the performance of a constant false alarm rate(CFAR) target detection method. G0 distribution is one of the optimal statistic models in the syn...The accuracy of background clutter model is a key factor which determines the performance of a constant false alarm rate(CFAR) target detection method. G0 distribution is one of the optimal statistic models in the synthetic aperture radar(SAR) image background clutter modeling and can accurately model various complex background clutters in the SAR images. But the application of the distribution is greatly limited by its disadvantages that the parameter estimation is complex and the local detection threshold is difficult to be obtained. In order to solve the above-mentioned problems, an synthetic aperture radar CFAR target detection method using the logarithmic cumulant(Mo LC) + method of moment(Mo M)-based G0 distribution clutter model is proposed. In the method, G0 distribution is used for modeling the background clutters, a new Mo LC+Mo M-based parameter estimation method coupled with a fast iterative algorithm is used for estimating the parameters of G0 distribution and an exquisite dichotomy method is used for obtaining the local detection threshold of CFAR detection, which greatly improves the computational efficiency, detection performance and environmental adaptability of CFAR detection. Experimental results show that the proposed SAR CFAR target detection method has good target detection performance in various complex background clutter environments.展开更多
The paper aims to execute puppet without restrictions by controling puppet using robot. We controling puppet in the same way as the present puppet, but we perform this by robot. It offers more advantages and lessen th...The paper aims to execute puppet without restrictions by controling puppet using robot. We controling puppet in the same way as the present puppet, but we perform this by robot. It offers more advantages and lessen the weak points. It needs various actions and expressions because of the nature of a puppet. The biggest problem which executes this is the ways to create a system. This thesis proposes motion capture of developed method with solution of this problem. So, we create various contents needed by puppet. In this part, developed method means a mixed method on the basis of optical system and magnetic system used mainly for the present method of motion capture. We lessen the weak points of each method and propoe solution of create motion for pupct by offering more advantages. So we solve difficulties of executing puppet and probable probkans when we execute puppet by using robot. The solution of this thesis is proven by applying control of puppet.展开更多
Over the past decade, ultrathin lanthanide oxides (Ln2O3, Ln = La to Lu) nanomaterials have been intensively studied in the fields of rare earth materials science. This unique class of nanomaterials has shown many u...Over the past decade, ultrathin lanthanide oxides (Ln2O3, Ln = La to Lu) nanomaterials have been intensively studied in the fields of rare earth materials science. This unique class of nanomaterials has shown many unprecedented properties (big surface area, high surface effect, physical and chemical activities) and is thus being explored for numerous promising applications. In this review, a brief introduction of ultrathin Ln2O3 nanomaterials was given and their unique advantages were highlighted. Then, the typical synthetic methodologies were summarized and compared (thermal decomposition, solvothermal, soft template, co-precipition and microwave etc.). Due to the high surface effect, some promising applications of ultmthin Ln203 nanomaterials, such as drug delivery and catalysis of CO oxidation, were reviewed. Finally, on the basis of current achievements on ultrathin Ln203 nanomaterials, personal perspectives and challenges on future research directions were proposed.展开更多
We report that noble metal nanopartcles (Pd, Pt, Au, and Ag) decorated-graphene nanosheets can be synthesized with the template of graphene oxide by a one-pot solution-based method. The resulting hybrid materials are ...We report that noble metal nanopartcles (Pd, Pt, Au, and Ag) decorated-graphene nanosheets can be synthesized with the template of graphene oxide by a one-pot solution-based method. The resulting hybrid materials are characterized by transmission electronic microscopy, energy dispersive X-ray spectroscopy, scanning electronic microscopy, atomic force microscopy, X-ray diffraction, and Raman spectroscopy, which demonstrate that the metal nanoparticles have been uniformly deposited on the surfaces of graphene nanosheets. Our results in turn verify that the carboxylic groups of graphene oxide are statistically distributed on its whole sheet surface rather than just at its edges. The graphene-metal nanohybrids can be used as catalysts in the reduction of potassium hexacyanoferrate(Ⅲ) with NaBH4 in aqueous solution. Our results suggest that graphene is a superior substrate to support metals for applications in the heterogeneous catalysis.展开更多
Biomedical applications of porous calcium car- bonate (CaCO3) microspheres have been mainly restricted by their aqueous instability and low remineralization rate. To overcome these obstacles, a novel symmetry-breaki...Biomedical applications of porous calcium car- bonate (CaCO3) microspheres have been mainly restricted by their aqueous instability and low remineralization rate. To overcome these obstacles, a novel symmetry-breaking assembled porous calcite microsphere (PCMS) was con- structed in an ethanol/water mixed system using a two-step vapor-diffusion/aging crystallization strategy. In contrast to the conventional additive-induced crystallization method, the present strategy was performed under mild conditions and was free from any foreign additives, thus avoiding the potential contamination of the final product. Meanwhile, the prepared PCMSs were characterized by their highly uniform spherical morphology and large open pores, which are fa- vorable for large protein delivery. An antimicrobial study of immunoglobulin Y (IgY)-loaded PCMSs revealed excellent antimicrobial activity against Streptococcus mutans. More importantly, they showed surprisingly rapid transformation to bone minerals in physiological medium. Evaluation of the in vitro efficacy of PCMSs in dentinal tubule occlusion demonstrated their powerful potential to serve as a catalyst in the repair of dental hard tissue. Therefore, the developed PCMSs show great promise as multifunctional biomaterials for dental treatment applications.展开更多
The controlled synthesis of gold nanocrystals has been the subject of intensive studies for decades because the properties and functions of gold nanomaterials are highly dependent on their particle size, shape, and di...The controlled synthesis of gold nanocrystals has been the subject of intensive studies for decades because the properties and functions of gold nanomaterials are highly dependent on their particle size, shape, and dimensionality. Especially, anisotropic gold nanocrystals, such as nanowires, nanobelts, nanoplates and nanosheets, have attracted much attention due to their striking properties and promising applications in electronics, catalysis, photonics, sensing and biomedicine. In this review, we will summarize the recent developments of one- dimensional (1D) and two-dimensional (2D) gold nanostructures. Various kinds of synthetic methods for preparation of these 1D and 2D gold nanocrystals will be described. Moreover, we will also briefly introduce the properties and potential applications of these 1D and 2D gold nanocrystals.展开更多
In contrast to conventional main-chain conjugated polymers, incorporation of electronically active conjugated oligomers into non-conjugated polymer backbones as pendant groups represents a promising alternative strate...In contrast to conventional main-chain conjugated polymers, incorporation of electronically active conjugated oligomers into non-conjugated polymer backbones as pendant groups represents a promising alternative strategy to developing novel electroactive polymer materials that are desirable for potential applications in organic electronics. This review focuses on polymers with thiophene in the side chain and summarizes the most important synthetic approaches to these polymers, including direct controlled polymerization techniques(e.g., ATRP, ROMP, and RAFT) as well as post-polymerization modifications. Additionally, various properties and applications of these polymers are discussed.展开更多
The complicated, highly dynamic and diverse nature of biosystems brings great challenges to the specific analysis of molecular processes of interest. Nature provides antibodies for the specific recognition of antigens...The complicated, highly dynamic and diverse nature of biosystems brings great challenges to the specific analysis of molecular processes of interest. Nature provides antibodies for the specific recognition of antigens, which is a straight-forward way for targeted analysis. However, there are still limitations during the practical applications due to the big size of the antibodies, which accelerate the discovery of small molecular probes. Peptides built from various optional building blocks and easily achieved by chemical synthetic approaches with predictable conformations, are versatile and can act as tailor-made targeting vehicles.In this mini review, we summarize the recent developments in the discovery of novel peptides for bioanalytical and biomedical applications. Progresses in peptide-library design and selection strategies are presented. Recent achievements in the peptide-guided detection, imaging and disease treatment are also focused.展开更多
文摘As a new frontier in catalysis field,single-atom catalysts(SACs)hold unique electronic structure and high atom utilization,which have displayed unprecedented activity and selectivity toward a wide range of catalytic reactions.However,many reported SACs are susceptible to Ostwald ripening process in high temperature environment or long-term catalytic application,which will cause sintering and deactivation.This is due to the weak interaction between the metal atom and supports.The regeneration and recycling of deactivated catalysts will greatly increase the time and economic cost of industrial production.Therefore,it is necessary to develop SACs with excellent thermal stability to meet the industrial demands.Here,we discuss the fundamental comprehension of the stability of thermally stable SACs obtained from different synthesis methods.The influences of the speciation of metal centers and coordination environments on thermal stability are summarized.The importance of using novel in situ and operando characterizations to reveal dynamic structural evolution under synthesis and reaction conditions and to identify active sites of thermally stable SACs is highlighted.The mechanistic understanding of the unique role of thermally stable SACs in thermocatalytic application is also discussed.At last,a brief perspective on the remaining challenges and future directions of thermally stable SACs is presented.
文摘By using different organic ligands, two 3D inorganic-organic hybrid compounds Co(C4H4N2)(VO3)2 1 and Co(C12H12N2)(VO3)2 2 were synthesized by hydrothermal reaction and characterized by X-ray crystallography. Crystal data: 1. crystal system orthorhombic, space group Pnna, a=1 0.188(2) A, b=1 1.497(2) A, c=7.3975(15) A, V=866.5(3) A^3, Z=4, Dcalcd= 2.705 g/cm^3; 2. crystal system triclinic, space group P1^- (No. 2), a=8.3190(17) A, b=8.4764(17) A, c=1 1.183(2) A, a=95.48(3)°, β=92.03(3)°, γ=107.24(3)°,V=748.0(3) A^3, Z=2, Dcalcd= 1.958 g/cm^3. The framework of compound 1 contains both {Co(C4H4N2)} and infinite metavanadate chains. Crystal structure of compound 2 is constructed with inorganic {CoV2O6} layers across-linked by organic 1,2-bis(4-pyridyl) ethane ligands. The two compounds are thermally stable to approximately 410 ℃ and 350 ℃, respectively. Their optical band gaps are determined to be 2.13 eV and 2.12 eV by UV-VIS-NIR diffuse reflectance spectra, which revealed their nature of semiconductor and optical absorption features.
文摘Graphene(GR),a single‐layer carbon sheet with a hexagonal packed lattice structure,has displayed attractive potential and demonstrably become the research focus in artificial photocatalysis due to its enchanting properties in enhancing light absorption,electron transfer dynamics,and surface reactions.Currently,numerous efforts have shown that the properties of GR,which are closely correlated to the photocatalytic performance of GR‐based composites are significantly affected by the synthesis methods.Herein,we first introduce the optimization strategies of GR‐based hybrids and then elaborate the synthesis of GR‐based composite photocatalysts oriented by manifold roles of GR in photoredox catalysis,containing photoelectron mediator and acceptor,improving adsorption capacity,regulating light absorption range and intensity,as well as macromolecular photosensitizer.Beyond that,a brief outlook on the challenges in this burgeoning research field and potential evolution strategies for enhancing the photoactivity of GR‐based hybrids is presented and we anticipate that this review could provide some enlightenments for the rational construction and application of multifunctional GR‐based composite photocatalysts.
文摘In this work, author evaluated past theories and perspectives behind the definitions of science and/or branches of science. Also some of the philosophers of science and their specific philosophical interests were expressed. Author considered some type of interactions between some disciplines to determine, to solve the philosophical/scientific problems and to define the possible solutions. The purposes of this article are: (i) to define new synthesis method, (ii) to define new perspective for the philosophy of science, (iii) to define relation between new philosophy perspective and philosophy of science, (iv) to define and organize name, number, relations, and correct structure between special science branches and philosophy of science, (v) to define necessary and sufficient number of branches for philosophy of science, (vi) to define and express the importance and place of new philosophy of science perspective in the new system, (vii) to extend the definition/limits of philosophy of science, (viii) to re-define meanings of some philosophical/scientific theories, (ix) to define systematic solution for the conflicts, problems, confusions about philosophy of science, sciences and branches of science, (x) to define new branches of science, (xi) to re-construct branches and hierarchy of science, (xii) to define new theories about science and branches of science. Author considered R-Synthesis as a method for the evaluation oftbe philosophy, philosophy of science, sciences and branches of science. This R-Synthesis includes evaluation of eight categories of general/specific perspective, 21-dimensions, and 12 general subjects (with related scope and contents) for the past 12,000 years. It is a kind of synthesis of science and non-science, physical science and non-physical science, religious science and non-religious science, and others. In this article, author defined 27 possible definitive/certain result cases for this new synthesis. Author defined the possible formation stages shortly to express new disciplines, new constructional and/or complementary theories. These theories are considered to define 21 major effective disciplines. New philosophy perspective is defined (R-Philosophy) shortly. New perspective and sub branches are defined for the philosophy of science. Major sciences are defined due to new basic philosophies. 42-basic components are defined for each science branch. New and/or re-constructed sciences, branches of science, basic sciences, and new hierarchy of science are defined with figure. Electromagnetic sciences, information sciences, and system sciences are defined specifically. Hybrid Sciences, New Era Science, and Ideal Scientific System are defined with general/specific figure. Relation between the some old branches and new branches of science was expressed generally due to new perspective of philosophy of science.
文摘For seismic design of structure and machinery, it is important to reproduce input earthquake motions that are likely to occur at a target site. Among the various methods used for generating artificial earthquake motions, the Synthesis Method of Trigonometric Function is used widely. In this method, artificial waves are reproduced by superimposing sine waves and then adding information about amplitude and phase in the frequency domain. In the Japanese architectural design code, the amplitude is standardized as the target response spectrum, and the phase can be defined by random numbers or by the phase of one observed wave. However, a random phase is distinctly different from the phase of an actual earthquake. Further, the phase of one observed wave is confined to the phase characteristic of the artificial wave of only one specific earthquake motion. In this paper, the authors introduce a new convenient method to reproduce artificial waves that not only satisfy the standardized spectrum property but also have the time-frequency characteristics of multiple observed waves. The authors show the feature of the artificial waves, discuss the merits of the method by comparing with existing methods, and report the tendencies of the non-liuear response by using simple model.
基金Project(61105020)supported by the National Natural Science Foundation of ChinaProject(13zxtk08)supported by the Key Research Platform for Research Projects of Southwest University of Science and Technology,China
文摘The accuracy of background clutter model is a key factor which determines the performance of a constant false alarm rate(CFAR) target detection method. G0 distribution is one of the optimal statistic models in the synthetic aperture radar(SAR) image background clutter modeling and can accurately model various complex background clutters in the SAR images. But the application of the distribution is greatly limited by its disadvantages that the parameter estimation is complex and the local detection threshold is difficult to be obtained. In order to solve the above-mentioned problems, an synthetic aperture radar CFAR target detection method using the logarithmic cumulant(Mo LC) + method of moment(Mo M)-based G0 distribution clutter model is proposed. In the method, G0 distribution is used for modeling the background clutters, a new Mo LC+Mo M-based parameter estimation method coupled with a fast iterative algorithm is used for estimating the parameters of G0 distribution and an exquisite dichotomy method is used for obtaining the local detection threshold of CFAR detection, which greatly improves the computational efficiency, detection performance and environmental adaptability of CFAR detection. Experimental results show that the proposed SAR CFAR target detection method has good target detection performance in various complex background clutter environments.
基金supported bythe Ministry of Knowledge Economy,Korea,the ITRC(Information Technology Research Center)support program(No.NIPA-2009-(C1090-0902-0007))
文摘The paper aims to execute puppet without restrictions by controling puppet using robot. We controling puppet in the same way as the present puppet, but we perform this by robot. It offers more advantages and lessen the weak points. It needs various actions and expressions because of the nature of a puppet. The biggest problem which executes this is the ways to create a system. This thesis proposes motion capture of developed method with solution of this problem. So, we create various contents needed by puppet. In this part, developed method means a mixed method on the basis of optical system and magnetic system used mainly for the present method of motion capture. We lessen the weak points of each method and propoe solution of create motion for pupct by offering more advantages. So we solve difficulties of executing puppet and probable probkans when we execute puppet by using robot. The solution of this thesis is proven by applying control of puppet.
基金supported by the Start-up Funding from Xi’an Jiaotong Universitythe Fundamental Research Funds for the Central Universities (2015qngz12)+1 种基金the National Natural Science Foundation of China (21371140)the China National Funds for Excellent Young Scientists (21522106)
文摘Over the past decade, ultrathin lanthanide oxides (Ln2O3, Ln = La to Lu) nanomaterials have been intensively studied in the fields of rare earth materials science. This unique class of nanomaterials has shown many unprecedented properties (big surface area, high surface effect, physical and chemical activities) and is thus being explored for numerous promising applications. In this review, a brief introduction of ultrathin Ln2O3 nanomaterials was given and their unique advantages were highlighted. Then, the typical synthetic methodologies were summarized and compared (thermal decomposition, solvothermal, soft template, co-precipition and microwave etc.). Due to the high surface effect, some promising applications of ultmthin Ln203 nanomaterials, such as drug delivery and catalysis of CO oxidation, were reviewed. Finally, on the basis of current achievements on ultrathin Ln203 nanomaterials, personal perspectives and challenges on future research directions were proposed.
基金supported by the National Natural Science Foundation of China (50773038& 20974093)National Basic Research Program of China (973 Program,2007CB936000)+2 种基金Qianjiang Talent Foundation of Zhejiang Province (2010R10021)the Fundamental Research Funds for the Central Universities (2009QNA4040)the Foundation for the Author of National Excellent Doctoral Dissertation of China (200527)
文摘We report that noble metal nanopartcles (Pd, Pt, Au, and Ag) decorated-graphene nanosheets can be synthesized with the template of graphene oxide by a one-pot solution-based method. The resulting hybrid materials are characterized by transmission electronic microscopy, energy dispersive X-ray spectroscopy, scanning electronic microscopy, atomic force microscopy, X-ray diffraction, and Raman spectroscopy, which demonstrate that the metal nanoparticles have been uniformly deposited on the surfaces of graphene nanosheets. Our results in turn verify that the carboxylic groups of graphene oxide are statistically distributed on its whole sheet surface rather than just at its edges. The graphene-metal nanohybrids can be used as catalysts in the reduction of potassium hexacyanoferrate(Ⅲ) with NaBH4 in aqueous solution. Our results suggest that graphene is a superior substrate to support metals for applications in the heterogeneous catalysis.
基金supported by the National Natural Science Foundation ofChina (51402329 and 81500806)the Science Foundation for Youth Scholar of State Key Laboratory of High Performance Ceramics and Superfine Microstructures (SKL201404)Shanghai Excellent Academic Leaders Program (14XD1403800)
文摘Biomedical applications of porous calcium car- bonate (CaCO3) microspheres have been mainly restricted by their aqueous instability and low remineralization rate. To overcome these obstacles, a novel symmetry-breaking assembled porous calcite microsphere (PCMS) was con- structed in an ethanol/water mixed system using a two-step vapor-diffusion/aging crystallization strategy. In contrast to the conventional additive-induced crystallization method, the present strategy was performed under mild conditions and was free from any foreign additives, thus avoiding the potential contamination of the final product. Meanwhile, the prepared PCMSs were characterized by their highly uniform spherical morphology and large open pores, which are fa- vorable for large protein delivery. An antimicrobial study of immunoglobulin Y (IgY)-loaded PCMSs revealed excellent antimicrobial activity against Streptococcus mutans. More importantly, they showed surprisingly rapid transformation to bone minerals in physiological medium. Evaluation of the in vitro efficacy of PCMSs in dentinal tubule occlusion demonstrated their powerful potential to serve as a catalyst in the repair of dental hard tissue. Therefore, the developed PCMSs show great promise as multifunctional biomaterials for dental treatment applications.
文摘The controlled synthesis of gold nanocrystals has been the subject of intensive studies for decades because the properties and functions of gold nanomaterials are highly dependent on their particle size, shape, and dimensionality. Especially, anisotropic gold nanocrystals, such as nanowires, nanobelts, nanoplates and nanosheets, have attracted much attention due to their striking properties and promising applications in electronics, catalysis, photonics, sensing and biomedicine. In this review, we will summarize the recent developments of one- dimensional (1D) and two-dimensional (2D) gold nanostructures. Various kinds of synthetic methods for preparation of these 1D and 2D gold nanocrystals will be described. Moreover, we will also briefly introduce the properties and potential applications of these 1D and 2D gold nanocrystals.
基金supported by the Office of Naval Research(N000141110191)South Carolina National Aeronautics and Space Administration Experimental Program to Stimulate Competitive Research(22-NE-USC_Tang)
文摘In contrast to conventional main-chain conjugated polymers, incorporation of electronically active conjugated oligomers into non-conjugated polymer backbones as pendant groups represents a promising alternative strategy to developing novel electroactive polymer materials that are desirable for potential applications in organic electronics. This review focuses on polymers with thiophene in the side chain and summarizes the most important synthetic approaches to these polymers, including direct controlled polymerization techniques(e.g., ATRP, ROMP, and RAFT) as well as post-polymerization modifications. Additionally, various properties and applications of these polymers are discussed.
基金supported by the National Natural Science Foundation of China (21375134, 21475140, 21135006, 21321003)The National Basic Research Program of China (2015CB856300)the Chinese Academy of Sciences
文摘The complicated, highly dynamic and diverse nature of biosystems brings great challenges to the specific analysis of molecular processes of interest. Nature provides antibodies for the specific recognition of antigens, which is a straight-forward way for targeted analysis. However, there are still limitations during the practical applications due to the big size of the antibodies, which accelerate the discovery of small molecular probes. Peptides built from various optional building blocks and easily achieved by chemical synthetic approaches with predictable conformations, are versatile and can act as tailor-made targeting vehicles.In this mini review, we summarize the recent developments in the discovery of novel peptides for bioanalytical and biomedical applications. Progresses in peptide-library design and selection strategies are presented. Recent achievements in the peptide-guided detection, imaging and disease treatment are also focused.