Based on the concepts of objective fact and subjective desire proposed in this paper, the problems that exist in the nodal injections-based and transaction-based transmission service allocation scheme are pointed out....Based on the concepts of objective fact and subjective desire proposed in this paper, the problems that exist in the nodal injections-based and transaction-based transmission service allocation scheme are pointed out. To get around the problems above, a novel transmission service allocation scheme is proposed which considers the power flow distribution and the transaction impact on the system simultaneously so that the issues of “Cross-subsidies” and “Counter flow” can be avoided. The principle of the scheme is illustrated using two simple networks with 7 cases. The results show that the proposed scheme can satisfy the properties necessary for the development and growth of the electricity market.展开更多
In the electricity market, charging based on the traditional spot electricity price often results in the payment imbalance of electric network, and goes against the development of the power system. So, it is necessary...In the electricity market, charging based on the traditional spot electricity price often results in the payment imbalance of electric network, and goes against the development of the power system. So, it is necessary to modify the spot price. The key of the modification lies in how to calculate the fixed unit transmission cost of each node, that is how to allocate the fixed transmission cost to users.To solve this problem, we develop a power flow tracing algrithm to modify the spot price. We put forward a path searching method based on the graph theory after studying the fundamental principle of power flow tracing and apply the method to the downstream tracing algorithm and upstream tracing algorithm according to the proportional distribution principle. Furthermore, to improve the computational efficiency of the algorithm, we introduce the branch expunction method to optimize the node order. By using the result of power flow tracing to get fixed node transmission cost and introducing it to modify the spot price, we obtain the synthetical price.The application to a 5-bus system prove the algorithm feasible.展开更多
文摘Based on the concepts of objective fact and subjective desire proposed in this paper, the problems that exist in the nodal injections-based and transaction-based transmission service allocation scheme are pointed out. To get around the problems above, a novel transmission service allocation scheme is proposed which considers the power flow distribution and the transaction impact on the system simultaneously so that the issues of “Cross-subsidies” and “Counter flow” can be avoided. The principle of the scheme is illustrated using two simple networks with 7 cases. The results show that the proposed scheme can satisfy the properties necessary for the development and growth of the electricity market.
文摘In the electricity market, charging based on the traditional spot electricity price often results in the payment imbalance of electric network, and goes against the development of the power system. So, it is necessary to modify the spot price. The key of the modification lies in how to calculate the fixed unit transmission cost of each node, that is how to allocate the fixed transmission cost to users.To solve this problem, we develop a power flow tracing algrithm to modify the spot price. We put forward a path searching method based on the graph theory after studying the fundamental principle of power flow tracing and apply the method to the downstream tracing algorithm and upstream tracing algorithm according to the proportional distribution principle. Furthermore, to improve the computational efficiency of the algorithm, we introduce the branch expunction method to optimize the node order. By using the result of power flow tracing to get fixed node transmission cost and introducing it to modify the spot price, we obtain the synthetical price.The application to a 5-bus system prove the algorithm feasible.