In Malaysia, airborne hyperspectral remote sensing is a relatively new technique used for research and commercial value in forest inventory and mapping. An advantage of airborne remote sensing, compared to satellite r...In Malaysia, airborne hyperspectral remote sensing is a relatively new technique used for research and commercial value in forest inventory and mapping. An advantage of airborne remote sensing, compared to satellite remote sensing, is its capability of offering a very high spatial resolution images. Thus, UPM-TropAIR AISA's airborne hyperspectral imagery that has been used in this study provides great quantity, better quality and also lower cost in identifying, quantifying and mapping of the Malaysian tropical timber forest resources. For the first stage in this study, the development of spectral library is deemed required in order for the Spectral Angle Mapper (SAM) classification be used to separate and map individual tree species in a tropical mixed mountain forest of Gunong Stong Forest Reserve. Pre-processing, enhancement and interpretation of image were conducted using ENVI Version 4.0 software. Results indicated that a total of eight commercial timber tree species was identified and mapped in a study plot of 5 ha using the TropAIR airborne hyperspectral imager with the aid of ground truthings.展开更多
Resonance flexural vibration(Fast Fourier Transform, FFT), ultrasonic wave(Pundit) and stress wave(Metriguard) techniques were examined as means of evaluating the static modulus of elasticity (MOE) and predicting the ...Resonance flexural vibration(Fast Fourier Transform, FFT), ultrasonic wave(Pundit) and stress wave(Metriguard) techniques were examined as means of evaluating the static modulus of elasticity (MOE) and predicting the modulus of rupture (MOR) of finger-jointed lumber specimens made with four kinds of Eucalyptus (Eucalyptus. citriodora, E. exserta, E. grandis x E. urophylla and E. grandis). Dynamic MOE was calculated from frequency and time obtained from forced vibrations and sounds induced in the four species of finger-jointed specimens. It was found that correlation coefficients between density and static MOE and dynamic MOE were statistically significant at the 0.01 level. And it was also found that the three nondestructive techniques can provide rapid and accurate means to determine the MOE, and the dynamic MOE was more accurate to predict static MOE than density. But the correlation coefficient between dynamic MOE, static MOE and MOR were lower than results reported by other researchers for solid wood, and were not statistically significant. It can be concluded that the three nondestructive techniques are useful for evaluating the MOE, but not suitable for predicting the MOR of finger-jointed.展开更多
文摘In Malaysia, airborne hyperspectral remote sensing is a relatively new technique used for research and commercial value in forest inventory and mapping. An advantage of airborne remote sensing, compared to satellite remote sensing, is its capability of offering a very high spatial resolution images. Thus, UPM-TropAIR AISA's airborne hyperspectral imagery that has been used in this study provides great quantity, better quality and also lower cost in identifying, quantifying and mapping of the Malaysian tropical timber forest resources. For the first stage in this study, the development of spectral library is deemed required in order for the Spectral Angle Mapper (SAM) classification be used to separate and map individual tree species in a tropical mixed mountain forest of Gunong Stong Forest Reserve. Pre-processing, enhancement and interpretation of image were conducted using ENVI Version 4.0 software. Results indicated that a total of eight commercial timber tree species was identified and mapped in a study plot of 5 ha using the TropAIR airborne hyperspectral imager with the aid of ground truthings.
基金This research is supported by ITTO Project PD 69/01 Rev.2(I) "Improved and diversified use of tropical plantation timber in China tosupplement diminishing supplies from natural forests".
文摘Resonance flexural vibration(Fast Fourier Transform, FFT), ultrasonic wave(Pundit) and stress wave(Metriguard) techniques were examined as means of evaluating the static modulus of elasticity (MOE) and predicting the modulus of rupture (MOR) of finger-jointed lumber specimens made with four kinds of Eucalyptus (Eucalyptus. citriodora, E. exserta, E. grandis x E. urophylla and E. grandis). Dynamic MOE was calculated from frequency and time obtained from forced vibrations and sounds induced in the four species of finger-jointed specimens. It was found that correlation coefficients between density and static MOE and dynamic MOE were statistically significant at the 0.01 level. And it was also found that the three nondestructive techniques can provide rapid and accurate means to determine the MOE, and the dynamic MOE was more accurate to predict static MOE than density. But the correlation coefficient between dynamic MOE, static MOE and MOR were lower than results reported by other researchers for solid wood, and were not statistically significant. It can be concluded that the three nondestructive techniques are useful for evaluating the MOE, but not suitable for predicting the MOR of finger-jointed.