Palaeosols associated with fluvial of the Siwalik Group are and lacustrine deposits that occur as thick multiple pedocomplexes. The bright red color of the palaeosol beds has been earlier interpreted as a result of ho...Palaeosols associated with fluvial of the Siwalik Group are and lacustrine deposits that occur as thick multiple pedocomplexes. The bright red color of the palaeosol beds has been earlier interpreted as a result of hot and arid palaeoclimate. However, as against this view, our investigations of the bright red palaeosol beds of the Lower Siwaliks suggest that the climate was cool and subhumid, instead of hot and arid during the deposition of these beds. Since cold climate is not very conducive to impart red coloration, further research is needed to explain the cause of these red beds. For this, the micromorphological study of soil thin sections was done which showed the presence of features such as dissolution and recrystallisation of quartz, feldspar and mica, compaction, slickensides, presence of calcite spars, subrounded and cracked nature of quartz grains, microfabric, complex patterns of birefringence fabrics, pigmentary ferric oxides, thick cutans and cementation by calcite. These features indicate that diagenesis took place on a large scale in these sediments. The positive Eh and neutral-alkaline pH of soils also suggest that the conditions were favorable for the formation of diagenetic red beds. During burial diagenesis of sediments, the hydroxides of ferromagnesian minerals got converted into ferric oxide minerals (hematite). During deep burial diagenesis smectite was converted into illite and the preponderance of illite over smectite with increasing depth of burial also indicates the diagenesis of sediments. Thus, the red color of the Lower Siwalik palaeosols seems to be due mainly to the burial diagenesis of sediments and does not appear to be due to the then prevailing climatic condition.展开更多
As a result of shortage supply of oil resources, the process for the alternative coal-based fuel, dimethyl ether (DME), has emerged as an important process in chemical engineering field. With the laboratory experime...As a result of shortage supply of oil resources, the process for the alternative coal-based fuel, dimethyl ether (DME), has emerged as an important process in chemical engineering field. With the laboratory experiment data about DME synthesis and separation, the production process for DME with high purity is proposed when one-step synthesis of DME in slurry bed reactor from syngas is adopted. On the basis of experimental research and process analysis, the proper unit modules and thermophysical calculation methods for the simulation process are selected. Incorporated the experimentally determined parameters of reaction dynamic model for DME synthesis, regression constants of parameters in non-random two-liquid equation (NRTL) model for binary component in DME separation system with built-in properties model, .the process flowsheet, is.developed and simulated on the Aspen Plus platform. The simulation results coincide well with data obtained in laboratory experiment. Accordingly, the accurate simulation results offer useful references to similar equipment design and process operation optimization.展开更多
Influence of reaction temperature, pressure and space velocity on the direct synthesis of dimethyl ether (DME) from syngas is studied in an isothermal fixed-bed reactor. The catalyst is a physical mixture of C301 copp...Influence of reaction temperature, pressure and space velocity on the direct synthesis of dimethyl ether (DME) from syngas is studied in an isothermal fixed-bed reactor. The catalyst is a physical mixture of C301 copper-based methanol (MeOH) synthesis catalyst and ZSM-5 dehydration catalyst. The experimental results show that the chemical synergy between methanol synthesis reaction and methanol dehydration reaction is evident. The conversion of carbon monoxide is over 90%.展开更多
Electric product house of magnesium alloy sheet is usually obtained by warm stamping owing to its poor plasticity and formability at room temperature.The formability of AZ31B magnesium alloy sheet can be improved by r...Electric product house of magnesium alloy sheet is usually obtained by warm stamping owing to its poor plasticity and formability at room temperature.The formability of AZ31B magnesium alloy sheet can be improved by repeated unidirectional bending(RUB)process through control of(0002)basal texture.Compared with as-received sheet,the Erichsen value(IE)of the sheet underwent RUB process increases to 5.90 from 3.53 at room temperature.It is also confirmed that cell phone houses could be stamped successfully in crank press with AZ31B magnesium alloy sheets underwent RUB process.It provides an alternative to the electronics industry in the application of magnesium alloys.展开更多
Charcoal gasification could mitigate the energetic problems in the rural zones since these regions have considerable amounts of wood, which is the base of such a fuel available. This paper presents some CFD (computat...Charcoal gasification could mitigate the energetic problems in the rural zones since these regions have considerable amounts of wood, which is the base of such a fuel available. This paper presents some CFD (computational fluid dynamic) predictions of the experimental results obtained from the fixed bed gasification of charcoal made in a pilot-scale downdraft reactor using air, which was designed and built by the Research Group in Clean Development Mechanisms and Energy Management, from the National University of Colombia. The quality of the syngas obtained from the process was evaluated through the CO and CO2 percentages measured in its composition. The performance at various air flow rates (measured at the system entrance, through an analog flow meter) is evaluated with the help of 11 thermocouples, which give the information to create a temperature profile, and three load cells to measure the solid fuel conversion rate. To simulate the process, the information from temperature profile, charcoal proximate analysis, air flow meter and load cells were taken as inputs and the syngas composition was obtained as the result from the calculation. The domain was defined as 2D with an axis-symmetric description, using quads as mesh elements. The calculation and results were performed in a CFD commercial code widely used for this type of simulations: ANSYS FLUENT. The predictions made by the software were validated with the experimental results obtained in the laboratory.展开更多
Activating transcription factor 4 (ATF4) has been shown to play key roles in many physiological processes. There are no reports, however, demonstrating a direct link between ATF4 and lipid metabolism. We noticed tha...Activating transcription factor 4 (ATF4) has been shown to play key roles in many physiological processes. There are no reports, however, demonstrating a direct link between ATF4 and lipid metabolism. We noticed that Atf4- deficient mice are lean, suggesting a possible role for ATF4 in regulating lipid metabolism. The goal of our current study is to investigate the involvement of ATF4 in lipid metabolism and elucidate the underlying mechanisms. Studies using Atf4-deficient mice revealed increased energy expenditure, as measured by oxygen consumption. These mice also showed increases in lipolysis, expression of uncoupling protein 2 (UCP2) and p-oxidation genes and decreases in expression of lipogenic genes in white adipose tissue (WAT), suggesting increased utilization and decreased synthesis of fatty acids, respectively. Expression of UCP1, 2 and 3 was also increased in brown adipose tissue (BAT), suggesting increased thermogenesis. The effect of ATF4 deletion on expression of UCPs in BAT suggests that increased thermogenesis may underlie increased energy expenditure. Thus, our study identifies a possible new function for ATF4 in regulating lipid metabolism and thermogenesis.展开更多
To enhance the process of phenyltrichlorosilane synthesis using gas phase condensation, a series of chloralkanes were introduced. The influence of temperature and chloralkane amount on the synthesis was studied based ...To enhance the process of phenyltrichlorosilane synthesis using gas phase condensation, a series of chloralkanes were introduced. The influence of temperature and chloralkane amount on the synthesis was studied based on the product distribution from a tubular reactor. The promoting effect of chloralkane addition was mainly caused by the chloralkane radicals generated by the dissociation of C–Cl bond. The promoting effect of the chloromethane with more chlorine atoms was better than those with less chlorine atoms. Intermediates detected from the reactions with isoprene and bromobenzene demonstrated that both trichlorosilyl radical and dichlorosilylene existed in the reaction system in the presence of chloralkanes. A detailed reaction scheme was proposed.展开更多
An experiment retail film packaging system was used to compare the atmospheric composition within sealed packs containing barangan banana fruits. This research was done in order to study the effect of packaging films ...An experiment retail film packaging system was used to compare the atmospheric composition within sealed packs containing barangan banana fruits. This research was done in order to study the effect of packaging films with different permeability properties on the physicochemicalproperties of barangan banana during storage at room temperature (28 ± 2 °C) and at 15 °C. The films used were 0.09 mm low density polyethylene (LDPE), 0.04 mm polypropylene and 0.057 mm LDPE compared with unwrapped fruits as control. Barangan bananas were evaluated each 5 days intervals for changes in moisture content, total sugars, vitamin C, hardness and color. Unwrapped barangan bananas were overripe and soft after 15 days at both temperature conditions. Sealed packages especially using LDPE at 15 °C delayed the development of the yellow color of banana until 20 days of storage and had the lowest weight loss.展开更多
On June 16,2016 the technical achievement of the Shaanxi Yanchang Oil Group relating to "the integrated process technology for comprehensive utilization of coal,oil and gas and their commercial application" has pass...On June 16,2016 the technical achievement of the Shaanxi Yanchang Oil Group relating to "the integrated process technology for comprehensive utilization of coal,oil and gas and their commercial application" has passed the experts’appraisal in Beijing.It is said that this achievement has shattered the traditional precedent and engineering paradigm of using coal or natural gas to simplistically manufacture methanol and has carved out a new mode for comprehensive utilization of coal, oil and gas resources, featuring apparent emissions reduction ef-fects with innovative nature to command a leading posi-tion internationally.展开更多
We demonstrate a simple and controllable way to synthesize large-area, few-layer graphene on iron substrates by an optimized chemical vapor deposition (CVD) method using a mixture of methane and hydrogen. Based on a...We demonstrate a simple and controllable way to synthesize large-area, few-layer graphene on iron substrates by an optimized chemical vapor deposition (CVD) method using a mixture of methane and hydrogen. Based on an analysis of the Fe-C phase diagram, a suitable procedure for the successful synthesis of graphene on Fe surfaces was designed. An appropriate temperature and cooling process were found to be very important in the synthesis of highly crystalline few-layer graphene. Graphene-based field-effect transistor (FET) devices were fabricated using the resulting few-layer graphene, and showed good quality with extracted mobilities of 300-1150 cm2/(V.s).展开更多
The present work explores how much IGCC can benefit from warm gas clean-up(WGCU)in comparison with conventional cold gas clean-up(CGCU) and what are the respective contributions of dry particulates removal and war...The present work explores how much IGCC can benefit from warm gas clean-up(WGCU)in comparison with conventional cold gas clean-up(CGCU) and what are the respective contributions of dry particulates removal and warm gas desulfurization (WGD) in a plant-wide point of view. Influences of key parameters of WGD on ther- modynamic performance of IGCC plant including desulfurization temperature, oxygen concentration in the re- generation stream, and H2S removal efficiency are discussed. It is obtained that the net efficiency of IGCC with full WGCU experiences an improvement of 1.77 percentage points compared with IGCC with full CGCU. Of which, dry particulates removal without water scrubber contributes about 1 percentage point. The influence of desulfurization temperature on thermodynamic performance of IGCC with WGD is weak especially when it is higher than about 350~C, which indicates that more focus should be put on investment cost, technical feasibility and sorbent stability for the selection of optimal operation temperature. Generally, 2%-3% of oxygen concentra- tion in the regeneration stream might be reasonable in a thermodynamic performance point of view. In addition, the improvement of 0.31 percentage points can be obtained by removal of H2S in the syngas from 27 ppm to 3 ppm.展开更多
Vapor-liquid phase transition occurs via a nucleation process, and depending on the role of foreign objects, nucleation can be either homogeneous or heterogeneous. In this review, we focus on the recently developed co...Vapor-liquid phase transition occurs via a nucleation process, and depending on the role of foreign objects, nucleation can be either homogeneous or heterogeneous. In this review, we focus on the recently developed constrained lattice density functional theory (CLDFT) and its applications on vapor-liquid nucleation. We also review the recent theoretical advance on the stability of nanobubbles. Based on CLDFT, a pinning and supersaturation mechanism has proposed to interpret the surprising stability of surface nanobubbles. The mechanism can interpret most characteristics of nanobubbles. More importantly, the mechanism suggests that the critical nucleus can be stabilized under the condition of contact line pinning. Thus, CLDFT studies provide an alternative way to measure the critical nucleus that is difficult to measure experimentally in the bulk solution, through stabilizing it with surface roughness or heterogeneities.展开更多
This paper presents thermodynamic evaluations of the agriculture residual-to-SNG process by thermochemical conversion, which mainly consists of the interconnected fluidized beds, hot gas cleaning, fluidized bed methan...This paper presents thermodynamic evaluations of the agriculture residual-to-SNG process by thermochemical conversion, which mainly consists of the interconnected fluidized beds, hot gas cleaning, fluidized bed methanation reactor and Selexol absorption unit. The process was modeled using Aspen Plus soft-ware. The process performances, i.e., CH4 content in SNG~ higher heating value and yield of SNGexergy efficiencies with and without heat recovery, unit power consumption, were evaluated firstly. The results indicate that when the other parameters remain unchanged, the steam-to-biomass ratio at carbon boundary point is the optimal value for the process. Im proving the preheating temperatures of air and gasifying agent is beneficial for the SNG yield and exergy effi ciencies. Due to the effects of COz removal efficiency, there are two optimization objectives for the SNG produc tion process: (I) to maximize CH4 content in SNC or (II) to maximize SNG yield. Further, the comparison among different feedstocks indicates that the decreasing order of SNG yield is: corn stalk 〉 wheat straw 〉 rice straw. The evaluation on the potential of agriculture-based SNG shows that the potential annual production of agriculture re sidual-based SNG could be between 555 108 - 611 108 m3 with utilization of 100% of the available unexplored resources. The agriculture residual-based SNG could play a significant role on solving the big shortfall of China's natural gas supply in future.展开更多
The authors consider a free interface problem which stems from a gas-solid model in combustion with pattern formation. A third-order, fully nonlinear, self-consistent equation for the flame front is derived. Asymptoti...The authors consider a free interface problem which stems from a gas-solid model in combustion with pattern formation. A third-order, fully nonlinear, self-consistent equation for the flame front is derived. Asymptotic methods reveal that the interface approaches a solution to the Kuramoto-Sivashinsky equation. Numerical results which illustrate the dynamics are presented.展开更多
文摘Palaeosols associated with fluvial of the Siwalik Group are and lacustrine deposits that occur as thick multiple pedocomplexes. The bright red color of the palaeosol beds has been earlier interpreted as a result of hot and arid palaeoclimate. However, as against this view, our investigations of the bright red palaeosol beds of the Lower Siwaliks suggest that the climate was cool and subhumid, instead of hot and arid during the deposition of these beds. Since cold climate is not very conducive to impart red coloration, further research is needed to explain the cause of these red beds. For this, the micromorphological study of soil thin sections was done which showed the presence of features such as dissolution and recrystallisation of quartz, feldspar and mica, compaction, slickensides, presence of calcite spars, subrounded and cracked nature of quartz grains, microfabric, complex patterns of birefringence fabrics, pigmentary ferric oxides, thick cutans and cementation by calcite. These features indicate that diagenesis took place on a large scale in these sediments. The positive Eh and neutral-alkaline pH of soils also suggest that the conditions were favorable for the formation of diagenetic red beds. During burial diagenesis of sediments, the hydroxides of ferromagnesian minerals got converted into ferric oxide minerals (hematite). During deep burial diagenesis smectite was converted into illite and the preponderance of illite over smectite with increasing depth of burial also indicates the diagenesis of sediments. Thus, the red color of the Lower Siwalik palaeosols seems to be due mainly to the burial diagenesis of sediments and does not appear to be due to the then prevailing climatic condition.
基金Supported by the National Technology Support Program of China(2006BAE02B02)the National Basic Research Program of China (2005CB221205)
文摘As a result of shortage supply of oil resources, the process for the alternative coal-based fuel, dimethyl ether (DME), has emerged as an important process in chemical engineering field. With the laboratory experiment data about DME synthesis and separation, the production process for DME with high purity is proposed when one-step synthesis of DME in slurry bed reactor from syngas is adopted. On the basis of experimental research and process analysis, the proper unit modules and thermophysical calculation methods for the simulation process are selected. Incorporated the experimentally determined parameters of reaction dynamic model for DME synthesis, regression constants of parameters in non-random two-liquid equation (NRTL) model for binary component in DME separation system with built-in properties model, .the process flowsheet, is.developed and simulated on the Aspen Plus platform. The simulation results coincide well with data obtained in laboratory experiment. Accordingly, the accurate simulation results offer useful references to similar equipment design and process operation optimization.
文摘Influence of reaction temperature, pressure and space velocity on the direct synthesis of dimethyl ether (DME) from syngas is studied in an isothermal fixed-bed reactor. The catalyst is a physical mixture of C301 copper-based methanol (MeOH) synthesis catalyst and ZSM-5 dehydration catalyst. The experimental results show that the chemical synergy between methanol synthesis reaction and methanol dehydration reaction is evident. The conversion of carbon monoxide is over 90%.
基金Project(50504019)supported by the National Natural Science Foundation of ChinaProject(2008BB4040)supported by the Science Foundation of Chongqing,ChinaProject(2008AA4028)supported by Scientific and Technological Project of Chongqing Science and Technology Commission,China
文摘Electric product house of magnesium alloy sheet is usually obtained by warm stamping owing to its poor plasticity and formability at room temperature.The formability of AZ31B magnesium alloy sheet can be improved by repeated unidirectional bending(RUB)process through control of(0002)basal texture.Compared with as-received sheet,the Erichsen value(IE)of the sheet underwent RUB process increases to 5.90 from 3.53 at room temperature.It is also confirmed that cell phone houses could be stamped successfully in crank press with AZ31B magnesium alloy sheets underwent RUB process.It provides an alternative to the electronics industry in the application of magnesium alloys.
文摘Charcoal gasification could mitigate the energetic problems in the rural zones since these regions have considerable amounts of wood, which is the base of such a fuel available. This paper presents some CFD (computational fluid dynamic) predictions of the experimental results obtained from the fixed bed gasification of charcoal made in a pilot-scale downdraft reactor using air, which was designed and built by the Research Group in Clean Development Mechanisms and Energy Management, from the National University of Colombia. The quality of the syngas obtained from the process was evaluated through the CO and CO2 percentages measured in its composition. The performance at various air flow rates (measured at the system entrance, through an analog flow meter) is evaluated with the help of 11 thermocouples, which give the information to create a temperature profile, and three load cells to measure the solid fuel conversion rate. To simulate the process, the information from temperature profile, charcoal proximate analysis, air flow meter and load cells were taken as inputs and the syngas composition was obtained as the result from the calculation. The domain was defined as 2D with an axis-symmetric description, using quads as mesh elements. The calculation and results were performed in a CFD commercial code widely used for this type of simulations: ANSYS FLUENT. The predictions made by the software were validated with the experimental results obtained in the laboratory.
文摘Activating transcription factor 4 (ATF4) has been shown to play key roles in many physiological processes. There are no reports, however, demonstrating a direct link between ATF4 and lipid metabolism. We noticed that Atf4- deficient mice are lean, suggesting a possible role for ATF4 in regulating lipid metabolism. The goal of our current study is to investigate the involvement of ATF4 in lipid metabolism and elucidate the underlying mechanisms. Studies using Atf4-deficient mice revealed increased energy expenditure, as measured by oxygen consumption. These mice also showed increases in lipolysis, expression of uncoupling protein 2 (UCP2) and p-oxidation genes and decreases in expression of lipogenic genes in white adipose tissue (WAT), suggesting increased utilization and decreased synthesis of fatty acids, respectively. Expression of UCP1, 2 and 3 was also increased in brown adipose tissue (BAT), suggesting increased thermogenesis. The effect of ATF4 deletion on expression of UCPs in BAT suggests that increased thermogenesis may underlie increased energy expenditure. Thus, our study identifies a possible new function for ATF4 in regulating lipid metabolism and thermogenesis.
文摘To enhance the process of phenyltrichlorosilane synthesis using gas phase condensation, a series of chloralkanes were introduced. The influence of temperature and chloralkane amount on the synthesis was studied based on the product distribution from a tubular reactor. The promoting effect of chloralkane addition was mainly caused by the chloralkane radicals generated by the dissociation of C–Cl bond. The promoting effect of the chloromethane with more chlorine atoms was better than those with less chlorine atoms. Intermediates detected from the reactions with isoprene and bromobenzene demonstrated that both trichlorosilyl radical and dichlorosilylene existed in the reaction system in the presence of chloralkanes. A detailed reaction scheme was proposed.
文摘An experiment retail film packaging system was used to compare the atmospheric composition within sealed packs containing barangan banana fruits. This research was done in order to study the effect of packaging films with different permeability properties on the physicochemicalproperties of barangan banana during storage at room temperature (28 ± 2 °C) and at 15 °C. The films used were 0.09 mm low density polyethylene (LDPE), 0.04 mm polypropylene and 0.057 mm LDPE compared with unwrapped fruits as control. Barangan bananas were evaluated each 5 days intervals for changes in moisture content, total sugars, vitamin C, hardness and color. Unwrapped barangan bananas were overripe and soft after 15 days at both temperature conditions. Sealed packages especially using LDPE at 15 °C delayed the development of the yellow color of banana until 20 days of storage and had the lowest weight loss.
文摘On June 16,2016 the technical achievement of the Shaanxi Yanchang Oil Group relating to "the integrated process technology for comprehensive utilization of coal,oil and gas and their commercial application" has passed the experts’appraisal in Beijing.It is said that this achievement has shattered the traditional precedent and engineering paradigm of using coal or natural gas to simplistically manufacture methanol and has carved out a new mode for comprehensive utilization of coal, oil and gas resources, featuring apparent emissions reduction ef-fects with innovative nature to command a leading posi-tion internationally.
文摘We demonstrate a simple and controllable way to synthesize large-area, few-layer graphene on iron substrates by an optimized chemical vapor deposition (CVD) method using a mixture of methane and hydrogen. Based on an analysis of the Fe-C phase diagram, a suitable procedure for the successful synthesis of graphene on Fe surfaces was designed. An appropriate temperature and cooling process were found to be very important in the synthesis of highly crystalline few-layer graphene. Graphene-based field-effect transistor (FET) devices were fabricated using the resulting few-layer graphene, and showed good quality with extracted mobilities of 300-1150 cm2/(V.s).
基金support for this work by the International Science & Technology Cooperation Program of China (2010DFB70560) and(2010GH0902)
文摘The present work explores how much IGCC can benefit from warm gas clean-up(WGCU)in comparison with conventional cold gas clean-up(CGCU) and what are the respective contributions of dry particulates removal and warm gas desulfurization (WGD) in a plant-wide point of view. Influences of key parameters of WGD on ther- modynamic performance of IGCC plant including desulfurization temperature, oxygen concentration in the re- generation stream, and H2S removal efficiency are discussed. It is obtained that the net efficiency of IGCC with full WGCU experiences an improvement of 1.77 percentage points compared with IGCC with full CGCU. Of which, dry particulates removal without water scrubber contributes about 1 percentage point. The influence of desulfurization temperature on thermodynamic performance of IGCC with WGD is weak especially when it is higher than about 350~C, which indicates that more focus should be put on investment cost, technical feasibility and sorbent stability for the selection of optimal operation temperature. Generally, 2%-3% of oxygen concentra- tion in the regeneration stream might be reasonable in a thermodynamic performance point of view. In addition, the improvement of 0.31 percentage points can be obtained by removal of H2S in the syngas from 27 ppm to 3 ppm.
基金supported by State Key Laboratory of Chemical Engineering (SKL-CHE-12B02)the National Natural Science Foundation of China (21276007)
文摘Vapor-liquid phase transition occurs via a nucleation process, and depending on the role of foreign objects, nucleation can be either homogeneous or heterogeneous. In this review, we focus on the recently developed constrained lattice density functional theory (CLDFT) and its applications on vapor-liquid nucleation. We also review the recent theoretical advance on the stability of nanobubbles. Based on CLDFT, a pinning and supersaturation mechanism has proposed to interpret the surprising stability of surface nanobubbles. The mechanism can interpret most characteristics of nanobubbles. More importantly, the mechanism suggests that the critical nucleus can be stabilized under the condition of contact line pinning. Thus, CLDFT studies provide an alternative way to measure the critical nucleus that is difficult to measure experimentally in the bulk solution, through stabilizing it with surface roughness or heterogeneities.
基金supported by the Special Fund for Major State Basic Research Projects of China (2010CB732206, 2013CB228106)the Scientific Research Foundation of Graduate School of Southeast University (YBJJ1219)
文摘This paper presents thermodynamic evaluations of the agriculture residual-to-SNG process by thermochemical conversion, which mainly consists of the interconnected fluidized beds, hot gas cleaning, fluidized bed methanation reactor and Selexol absorption unit. The process was modeled using Aspen Plus soft-ware. The process performances, i.e., CH4 content in SNG~ higher heating value and yield of SNGexergy efficiencies with and without heat recovery, unit power consumption, were evaluated firstly. The results indicate that when the other parameters remain unchanged, the steam-to-biomass ratio at carbon boundary point is the optimal value for the process. Im proving the preheating temperatures of air and gasifying agent is beneficial for the SNG yield and exergy effi ciencies. Due to the effects of COz removal efficiency, there are two optimization objectives for the SNG produc tion process: (I) to maximize CH4 content in SNC or (II) to maximize SNG yield. Further, the comparison among different feedstocks indicates that the decreasing order of SNG yield is: corn stalk 〉 wheat straw 〉 rice straw. The evaluation on the potential of agriculture-based SNG shows that the potential annual production of agriculture re sidual-based SNG could be between 555 108 - 611 108 m3 with utilization of 100% of the available unexplored resources. The agriculture residual-based SNG could play a significant role on solving the big shortfall of China's natural gas supply in future.
基金Project supported by a grant from the Fujian Administration of Foreign Expert Affairs,China (No.SZ2011008)
文摘The authors consider a free interface problem which stems from a gas-solid model in combustion with pattern formation. A third-order, fully nonlinear, self-consistent equation for the flame front is derived. Asymptotic methods reveal that the interface approaches a solution to the Kuramoto-Sivashinsky equation. Numerical results which illustrate the dynamics are presented.