In this work, Zr-M(M=Cu, Mn, Ce) type sulfur transfer agent was prepared by impregnation method. Under the condition similar to that in the regenerator of FCC units, the influence of different active metal components ...In this work, Zr-M(M=Cu, Mn, Ce) type sulfur transfer agent was prepared by impregnation method. Under the condition similar to that in the regenerator of FCC units, the influence of different active metal components and their contents on sulfur transfer agent were investigated. Moreover, the crystalline structure of sulfur transfer agent was characterized by X-ray diffraction(XRD) and Fourier transforms infrared spectroscopy(FT-IR). The result showed that the Zr-Mn sulfur transfer agent could effectively reduce the SO2 content in FCC regenerator flue gas, featuring high SO2 adsorption capacity. The sulfur transfer agent was inactivated in 40—60 min during the test. In the course of reduction reaction, after several reaction cycles, the formation of SO2 ceased and only H2 S was detected as the reduction product.展开更多
基金supported by the research fund of the National Natural Science Foundation of China (21306162)the National Basic Research Program "973" Project of China (2010CB226903)Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (AE201309)
文摘In this work, Zr-M(M=Cu, Mn, Ce) type sulfur transfer agent was prepared by impregnation method. Under the condition similar to that in the regenerator of FCC units, the influence of different active metal components and their contents on sulfur transfer agent were investigated. Moreover, the crystalline structure of sulfur transfer agent was characterized by X-ray diffraction(XRD) and Fourier transforms infrared spectroscopy(FT-IR). The result showed that the Zr-Mn sulfur transfer agent could effectively reduce the SO2 content in FCC regenerator flue gas, featuring high SO2 adsorption capacity. The sulfur transfer agent was inactivated in 40—60 min during the test. In the course of reduction reaction, after several reaction cycles, the formation of SO2 ceased and only H2 S was detected as the reduction product.