期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
求解约束优化问题的偏好多目标进化算法
被引量:
4
1
作者
董宁
王宇平
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
2014年第1期98-104,188,共8页
将约束优化问题转化为双目标优化问题,用进化算法求解转化的双目标问题.设计了新的混合交叉算子以提高算法在进化过程中的搜索能力,加快算法收敛;借鉴多目标优化加权度量法中成绩标量函数的特点,提出新的偏好适应度函数,进行个体比较和...
将约束优化问题转化为双目标优化问题,用进化算法求解转化的双目标问题.设计了新的混合交叉算子以提高算法在进化过程中的搜索能力,加快算法收敛;借鉴多目标优化加权度量法中成绩标量函数的特点,提出新的偏好适应度函数,进行个体比较和选择.新适应度以个体到参考点的加权距离衡量个体优劣,参考点和权向量体现选择的偏好.在进化过程中,自适应地选择参考点和权向量平衡进化的不同阶段对各个目标的偏好程度,增加种群多样性,避免算法早熟收敛.
展开更多
关键词
约束优化
多目标优化
进化算法
偏好
成绩标量函数
下载PDF
职称材料
基于向量角分解的高维多目标进化算法
被引量:
3
2
作者
赵玉亮
宋业新
康丽文
《控制与决策》
EI
CSCD
北大核心
2021年第3期761-768,共8页
选择是进化的主要驱动力,也是多目标进化算法的关键特征,然而,在处理高维多目标问题时,随着目标维数的增加种群的收敛性和分布性的冲突加剧,传统多目标进化算法中的选择算子已难以有效地维持种群的收敛性与分布性之间的平衡.针对该问题...
选择是进化的主要驱动力,也是多目标进化算法的关键特征,然而,在处理高维多目标问题时,随着目标维数的增加种群的收敛性和分布性的冲突加剧,传统多目标进化算法中的选择算子已难以有效地维持种群的收敛性与分布性之间的平衡.针对该问题,提出一种基于向量角分解的高维多目标进化算法.首先,将个体本身作为参考向量,利用目标向量之间的夹角作为个体的相似度测度估计种群分布性,以减轻算法预先指定权重向量的负担;然后,利用成绩标量函数作为个体的收敛性测度,该收敛测度在引导种群走向Pareto最优前沿方面发挥着重要作用;最后,提出一种基于向量角分解的精英选择策略,其在环境选择过程中利用向量角信息将目标空间动态分解,并利用成绩标量函数从分布性较好的区域中挑选较好的个体进入下一代,能够动态地平衡种群的收敛性和分布性.对比实验结果表明,所提出算法具有较强的竞争力,其在保持种群分布性的同时具有足够的选择压力,能够有效地引导高维目标空间的搜索.
展开更多
关键词
高维多目标进化
向量角
成绩标量函数
动态分解
精英选择策略
原文传递
题名
求解约束优化问题的偏好多目标进化算法
被引量:
4
1
作者
董宁
王宇平
机构
西安电子科技大学数学与统计学院
西安电子科技大学计算机学院
出处
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
2014年第1期98-104,188,共8页
基金
国家自然科学基金资助项目(61272119)
文摘
将约束优化问题转化为双目标优化问题,用进化算法求解转化的双目标问题.设计了新的混合交叉算子以提高算法在进化过程中的搜索能力,加快算法收敛;借鉴多目标优化加权度量法中成绩标量函数的特点,提出新的偏好适应度函数,进行个体比较和选择.新适应度以个体到参考点的加权距离衡量个体优劣,参考点和权向量体现选择的偏好.在进化过程中,自适应地选择参考点和权向量平衡进化的不同阶段对各个目标的偏好程度,增加种群多样性,避免算法早熟收敛.
关键词
约束优化
多目标优化
进化算法
偏好
成绩标量函数
Keywords
constrained optimization
multi-objective optimization
evolutionary algorithm
preference
achievement scalarizing function
分类号
TP301.6 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
基于向量角分解的高维多目标进化算法
被引量:
3
2
作者
赵玉亮
宋业新
康丽文
机构
海军工程大学基础部
海图信息中心
出处
《控制与决策》
EI
CSCD
北大核心
2021年第3期761-768,共8页
基金
国家自然科学基金项目(71171198,41631072,41771487)。
文摘
选择是进化的主要驱动力,也是多目标进化算法的关键特征,然而,在处理高维多目标问题时,随着目标维数的增加种群的收敛性和分布性的冲突加剧,传统多目标进化算法中的选择算子已难以有效地维持种群的收敛性与分布性之间的平衡.针对该问题,提出一种基于向量角分解的高维多目标进化算法.首先,将个体本身作为参考向量,利用目标向量之间的夹角作为个体的相似度测度估计种群分布性,以减轻算法预先指定权重向量的负担;然后,利用成绩标量函数作为个体的收敛性测度,该收敛测度在引导种群走向Pareto最优前沿方面发挥着重要作用;最后,提出一种基于向量角分解的精英选择策略,其在环境选择过程中利用向量角信息将目标空间动态分解,并利用成绩标量函数从分布性较好的区域中挑选较好的个体进入下一代,能够动态地平衡种群的收敛性和分布性.对比实验结果表明,所提出算法具有较强的竞争力,其在保持种群分布性的同时具有足够的选择压力,能够有效地引导高维目标空间的搜索.
关键词
高维多目标进化
向量角
成绩标量函数
动态分解
精英选择策略
Keywords
many-objective evolutionary
vector angle
achievement scalarizing function
dynamic decomposition
elite selection strategy
分类号
TP273 [自动化与计算机技术—检测技术与自动化装置]
原文传递
题名
作者
出处
发文年
被引量
操作
1
求解约束优化问题的偏好多目标进化算法
董宁
王宇平
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
2014
4
下载PDF
职称材料
2
基于向量角分解的高维多目标进化算法
赵玉亮
宋业新
康丽文
《控制与决策》
EI
CSCD
北大核心
2021
3
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部