Objective: To evaluate the osteocompatibility of D, L-polylactic/hydroxyapatite/decalcifying bone matrix (PDLLA/HA/DBM), and compare with PDLLA and DBM. Methods: Human primary osteoblasts isolated from the femoral hea...Objective: To evaluate the osteocompatibility of D, L-polylactic/hydroxyapatite/decalcifying bone matrix (PDLLA/HA/DBM), and compare with PDLLA and DBM. Methods: Human primary osteoblasts isolated from the femoral head of patients were inoculated onto PDLLA/HA/DBM, PLA and DBM respectively. The proliferation rate and collagen Ⅰ expression were detected. The interface between biomaterial and osteoblasts was investigated with phase contrast microscopy and electron scanning microscopy. Results: Best proliferation rate was observed with the PDLLA/HA/DBM and followed by DBM and PLA, suggesting that PDLLA/HA/DBM satisfying most requirements for the cultivation of human osteoblasts. Scanning electron microscopy showed the morphology of osteoblasts was correlated with the proliferation data. The cells, well spread and flattened, were attached closely on the surface of biomaterial with an arched structure and had normal morphology. The extracellular collagenous matrixs covered the surface of biomaterial and packed the granules of biomaterial. Conclusion: PDLLA/HA/DBM can form osteointerface early and have a good biocompability.展开更多
The unsaponifiable compounds derived from the fresh green beans of Vanilla siamens& Rol. ex. Dow were assayed for the first time to detect their estrogenic activity. We used a simple screening method using the yeast ...The unsaponifiable compounds derived from the fresh green beans of Vanilla siamens& Rol. ex. Dow were assayed for the first time to detect their estrogenic activity. We used a simple screening method using the yeast two hybrid system based on the binding of a ligand to estrogen receptors. Yeast cells carrying the hER (human estrogen receptor) gene, ERE (estrogen response elements) and lacZ (β-galactosidase gene) are very suitable for screening and sensitive analysis of estrogenic compound. Our results showed that V. siamensis plant extracts bind with relatively affinity to YES- hERa was 2.27-fold the relative potency ofestradiol (E2) in YES-hERa. The effects of phytoestrogen activity on the osteoblast cells were examined on the proliferation of hFOB 1.19 cells and the bone mineralization process. V. siamens& was a positive screening result and induced mineralization ofosteoblasts. This study indicated that V. siamensis plant extract exhibited the characteristic effects of a nature bone promoter compound as phytoestrogen.展开更多
Objective: To elucidate the effects of exogenous basic fibroblast growth factor ( bFGF ) on biological characteristics of rat osteoblasts cultured in vitro.Methods: The osteoblasts isolated from a Sprague-Dawley rat a...Objective: To elucidate the effects of exogenous basic fibroblast growth factor ( bFGF ) on biological characteristics of rat osteoblasts cultured in vitro.Methods: The osteoblasts isolated from a Sprague-Dawley rat and cultured in vitro were treated with different concentrations of bFGF (5-50 ng/ml) respectively. At 24 hours after treatment, the proliferating cell nuclear antigen was measured with immunocytochemistry, alkaline phosphatase ( ALP) activity was determined and the expression of transforming growth factor beta 1 (TGF-β1) was detected to observe the effects of bFGF on growth and differentiation of osteoblasts. Results: bFGF ( 5-50 ng/ml ) could obviously promote the growth of osteoblasts. The intracellular expression of TGF-β, mRNA increased significantly, but the intracellular ALP content decreased.Conclusions: bFGF can obviously stimulate the proliferation of osteoblasts and promote the synthesis of TGF-β1, but cannot promote the differentiation of osteoblasts.展开更多
MC3T3-E1 osteoblasts were cultured on H2O2- modified and unmodified carbon/carbon (H-C/C and C/C) composites for one week in order to evaluate differences in cell adhesion, spreading, and proliferation. The results ...MC3T3-E1 osteoblasts were cultured on H2O2- modified and unmodified carbon/carbon (H-C/C and C/C) composites for one week in order to evaluate differences in cell adhesion, spreading, and proliferation. The results indicated a certain degree of enhancement in the cell adhesion capability of osteoblasts cultured on H-C/C samples. Cellu- lar morphologies after cell adhesion were observed via scan- ning electron microscopy (SEM), which showed that the cells adhered more closely and spread more widely on the H-C/C sample surface. However, no cell appeared in several mul- tiple and continuous types of minor pores on both the C/C and H-C/C surfaces. In addition, two unique situations were observed on the H-C/C samples: an outline change of the osteoblasts was observed when the cells spread across some minor pores, and the cells entered and adhered well in some larger pores.展开更多
Enhanced antiinfection activities, improved hemocompatibility and osteo-compatibility, and reinforced osseointegration are among the most important considerations in designing multifunctional orthopedic biomaterials.H...Enhanced antiinfection activities, improved hemocompatibility and osteo-compatibility, and reinforced osseointegration are among the most important considerations in designing multifunctional orthopedic biomaterials.Hereby, anti-infective and osteogenic multifunctional 3 D printed porous Ti6 Al4 V implant with excellent hemocompatibility was successfully designed and fabricated. In brief, osteogenic micro-arc oxidation(MAO) coatings with micro/nanoscale porous topography were generated in situ on3 D printed Ti6 Al4 V scaffolds, on which heparin and vancomycin were easily immobilized. The surface microstructure,morphology, and chemical compositions were characterized employing scanning electron microscopy(SEM), X-ray photoelectron spectroscopy(XPS) and Fourier transform infrared spectroscopy(FTIR). High loading capacity and sustained vancomycin release profiles were revealed using high performance liquid chromatography(HPLC). Favorable antibacterial and antibiofilm performances against pathogenic Staphylococcus aureus(S. aureus) were validated in vitro through microbial viability assays, Live/Dead bacterial staining, and crystal violet staining. Human mesenchymal stem cells(h MSCs) were seeded on the scaffolds and their proliferation and viability were assessed using Cell Counting Kit and Live/Dead cell viability kit. Further, osteoblastic differentiation abilities were evaluated using alkaline phosphatase(ALP) activity as a hall marker. Additionally, the improved hemocompatibility of the heparinized scaffolds was confirmed by activated partial thromboplastin time(APTT), prothrombin time(PT) and thrombin time(TT). Overall, our results show that the surface-modified 3 D printed porous Ti6 Al4 V possesses balanced antibacterial and osteogenic functions while exhibiting extra anticlotting effects, boding well for future application in customized functional reconstruction of intricate bone defects.展开更多
文摘Objective: To evaluate the osteocompatibility of D, L-polylactic/hydroxyapatite/decalcifying bone matrix (PDLLA/HA/DBM), and compare with PDLLA and DBM. Methods: Human primary osteoblasts isolated from the femoral head of patients were inoculated onto PDLLA/HA/DBM, PLA and DBM respectively. The proliferation rate and collagen Ⅰ expression were detected. The interface between biomaterial and osteoblasts was investigated with phase contrast microscopy and electron scanning microscopy. Results: Best proliferation rate was observed with the PDLLA/HA/DBM and followed by DBM and PLA, suggesting that PDLLA/HA/DBM satisfying most requirements for the cultivation of human osteoblasts. Scanning electron microscopy showed the morphology of osteoblasts was correlated with the proliferation data. The cells, well spread and flattened, were attached closely on the surface of biomaterial with an arched structure and had normal morphology. The extracellular collagenous matrixs covered the surface of biomaterial and packed the granules of biomaterial. Conclusion: PDLLA/HA/DBM can form osteointerface early and have a good biocompability.
文摘The unsaponifiable compounds derived from the fresh green beans of Vanilla siamens& Rol. ex. Dow were assayed for the first time to detect their estrogenic activity. We used a simple screening method using the yeast two hybrid system based on the binding of a ligand to estrogen receptors. Yeast cells carrying the hER (human estrogen receptor) gene, ERE (estrogen response elements) and lacZ (β-galactosidase gene) are very suitable for screening and sensitive analysis of estrogenic compound. Our results showed that V. siamensis plant extracts bind with relatively affinity to YES- hERa was 2.27-fold the relative potency ofestradiol (E2) in YES-hERa. The effects of phytoestrogen activity on the osteoblast cells were examined on the proliferation of hFOB 1.19 cells and the bone mineralization process. V. siamens& was a positive screening result and induced mineralization ofosteoblasts. This study indicated that V. siamensis plant extract exhibited the characteristic effects of a nature bone promoter compound as phytoestrogen.
文摘Objective: To elucidate the effects of exogenous basic fibroblast growth factor ( bFGF ) on biological characteristics of rat osteoblasts cultured in vitro.Methods: The osteoblasts isolated from a Sprague-Dawley rat and cultured in vitro were treated with different concentrations of bFGF (5-50 ng/ml) respectively. At 24 hours after treatment, the proliferating cell nuclear antigen was measured with immunocytochemistry, alkaline phosphatase ( ALP) activity was determined and the expression of transforming growth factor beta 1 (TGF-β1) was detected to observe the effects of bFGF on growth and differentiation of osteoblasts. Results: bFGF ( 5-50 ng/ml ) could obviously promote the growth of osteoblasts. The intracellular expression of TGF-β, mRNA increased significantly, but the intracellular ALP content decreased.Conclusions: bFGF can obviously stimulate the proliferation of osteoblasts and promote the synthesis of TGF-β1, but cannot promote the differentiation of osteoblasts.
基金supported by the National Natural Science Foundation of China(51472203 and 51521061)the Natural Science Basic Research Plan in Shaanxi Province of China(2014JM6233)"111" project of china(B08040)
文摘MC3T3-E1 osteoblasts were cultured on H2O2- modified and unmodified carbon/carbon (H-C/C and C/C) composites for one week in order to evaluate differences in cell adhesion, spreading, and proliferation. The results indicated a certain degree of enhancement in the cell adhesion capability of osteoblasts cultured on H-C/C samples. Cellu- lar morphologies after cell adhesion were observed via scan- ning electron microscopy (SEM), which showed that the cells adhered more closely and spread more widely on the H-C/C sample surface. However, no cell appeared in several mul- tiple and continuous types of minor pores on both the C/C and H-C/C surfaces. In addition, two unique situations were observed on the H-C/C samples: an outline change of the osteoblasts was observed when the cells spread across some minor pores, and the cells entered and adhered well in some larger pores.
基金the Grant from Ministry of Science and Technology of China(2016YFB1101501)and researchfinancial support from the Beijing AKEC Medical Co.,Ltd.Medical Research Center of Peking University Third Hospital
文摘Enhanced antiinfection activities, improved hemocompatibility and osteo-compatibility, and reinforced osseointegration are among the most important considerations in designing multifunctional orthopedic biomaterials.Hereby, anti-infective and osteogenic multifunctional 3 D printed porous Ti6 Al4 V implant with excellent hemocompatibility was successfully designed and fabricated. In brief, osteogenic micro-arc oxidation(MAO) coatings with micro/nanoscale porous topography were generated in situ on3 D printed Ti6 Al4 V scaffolds, on which heparin and vancomycin were easily immobilized. The surface microstructure,morphology, and chemical compositions were characterized employing scanning electron microscopy(SEM), X-ray photoelectron spectroscopy(XPS) and Fourier transform infrared spectroscopy(FTIR). High loading capacity and sustained vancomycin release profiles were revealed using high performance liquid chromatography(HPLC). Favorable antibacterial and antibiofilm performances against pathogenic Staphylococcus aureus(S. aureus) were validated in vitro through microbial viability assays, Live/Dead bacterial staining, and crystal violet staining. Human mesenchymal stem cells(h MSCs) were seeded on the scaffolds and their proliferation and viability were assessed using Cell Counting Kit and Live/Dead cell viability kit. Further, osteoblastic differentiation abilities were evaluated using alkaline phosphatase(ALP) activity as a hall marker. Additionally, the improved hemocompatibility of the heparinized scaffolds was confirmed by activated partial thromboplastin time(APTT), prothrombin time(PT) and thrombin time(TT). Overall, our results show that the surface-modified 3 D printed porous Ti6 Al4 V possesses balanced antibacterial and osteogenic functions while exhibiting extra anticlotting effects, boding well for future application in customized functional reconstruction of intricate bone defects.